A204503 Squares n^2 such that floor(n^2/9) is again a square.
0, 1, 4, 9, 16, 36, 81, 144, 225, 324, 441, 576, 729, 900, 1089, 1296, 1521, 1764, 2025, 2304, 2601, 2916, 3249, 3600, 3969, 4356, 4761, 5184, 5625, 6084, 6561, 7056, 7569, 8100, 8649, 9216, 9801, 10404, 11025, 11664, 12321, 12996, 13689, 14400, 15129, 15876
Offset: 1
Links
- M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
- Index to sequences related to truncating digits of squares.
Programs
-
Mathematica
Select[Range[0,200]^2,IntegerQ[Sqrt[Floor[#/9]]]&] (* Harvey P. Dale, Jan 27 2012 *)
-
PARI
b=9;for(n=1,200,issquare(n^2\b) & print1(n^2,","))
Formula
a(n) = A204502(n)^2.
Conjectures: a(n) = 9*(n-4)^2 for n>5. G.f.: x^2*(7*x^6-12*x^5-11*x^4-x-1) / (x-1)^3. - Colin Barker, Sep 15 2014
Comments