A204516 Numbers such that floor(a(n)^2 / 7) is a square.
0, 1, 2, 3, 8, 16, 45, 127, 254, 717, 2024, 4048, 11427, 32257, 64514, 182115, 514088, 1028176, 2902413, 8193151, 16386302, 46256493, 130576328, 261152656, 737201475, 2081028097, 4162056194, 11748967107, 33165873224, 66331746448
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
- Index to sequences related to truncating digits of squares.
- Index entries for linear recurrences with constant coefficients, signature (0,0,16,0,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,0,16,0,0,-1},{0,1,2,3,8,16,45},30] (* or *) CoefficientList[Series[ (x+2x^2+3x^3-8x^4-16x^5-3x^6)/(1-16x^3+x^6),{x,0,30}],x] (* Harvey P. Dale, Apr 22 2023 *)
-
PARI
b=7;for(n=0,2e9,issquare(n^2\b) & print1(n","))
Formula
G.f. = (x + 2*x^2 + 3*x^3 - 8*x^4 - 16*x^5 - 3*x^6 )/(1 - 16*x^3 + x^6).
floor(a(n)^2 / 7) = A204517(n)^2.
Comments