A204651 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) nondecreasing in column and row directions, respectively.
8, 16, 16, 28, 32, 28, 48, 56, 56, 48, 80, 90, 104, 90, 80, 132, 137, 178, 178, 137, 132, 216, 200, 284, 330, 284, 200, 216, 352, 283, 434, 571, 571, 434, 283, 352, 572, 390, 637, 938, 1076, 938, 637, 390, 572, 928, 526, 908, 1478, 1918, 1918, 1478, 908, 526, 928
Offset: 1
Examples
Some solutions for n=5 k=3 ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..1 ..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..1 ..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..1 ..0..0..1..1....0..0..1..1....0..0..0..1....0..0..0..1....0..0..1..1 ..0..0..1..1....1..1..1..1....0..0..0..1....0..0..0..1....0..1..1..1 ..0..0..1..1....1..1..1..1....1..1..1..0....0..1..1..1....0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..6956
Formula
Empirical: T(n,k) recurrences
T(1,k)=2*T(1,k-1)-T(1,k-3)
T(2,k)=4*T(2,k-1)-5*T(2,k-2)+5*T(2,k-4)-4*T(2,k-5)+T(2,k-6)
T(3,k)=4*T(3,k-1)-5*T(3,k-2)+5*T(3,k-4)-4*T(3,k-5)+T(3,k-6) for k>7
T(4,k)=5*T(4,k-1)-9*T(4,k-2)+5*T(4,k-3)+5*T(4,k-4)-9*T(4,k-5)+5*T(4,k-6)-T(4,k-7) for k>9
and in general for n>2 (checked to n=15 k=210):
row recurrence coefficients are the coefficients of (1+x)*(1-x)^(k+2) and the row recurrence is valid for k>2*n+1
Comments