cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204831 Numbers n whose divisors can be partitioned into four disjoint sets whose sums are all sigma(n)/4.

Original entry on oeis.org

27720, 30240, 32760, 50400, 55440, 60480, 65520, 75600, 83160, 85680, 90720, 95760, 98280, 100800, 105840, 110880, 115920, 120120, 120960, 128520, 131040, 138600, 143640, 151200, 163800, 166320, 171360, 180180, 181440, 184800, 191520
Offset: 1

Views

Author

Jaroslav Krizek, Jan 22 2012

Keywords

Comments

Subsequence of A023198 (numbers n such that sigma(n) >= 4n).

Examples

			Number 27720 is in the sequence because sigma(27720)/4 = 28080 = 360 + 27720 = 20 + 60 + 280 + 2310 + 4620 + 6930 + 13860 = 9 + 30 + 420 + 1540 + 1980 + 2772 + 3080 + 3465 + 5544 + 9240 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 10 + 11 + 12 + 14 + 15 + 18 + 21 + 22 + 24 + 28 + 33 + 35 + 36 + 40 + 42 + 44 + 45 + 55 + 56 + 63 + 66 + 70+ 72 + 77 + 84 + 88 + 90 + 99 + 105 + 110 + 120 + 126 + 132 + 140 + 154 + 165 + 168 + 180 + 198 + 210 + 220 + 231 + 252 + 264+ 308 + 315 + 330 + 385 + 396 + 440 + 462 + 495 + 504 + 616 + 630 + 660 + 693 + 770 + 792 + 840 + 924 + 990 + 1155 + 1260 + 1320 + 1386 + 1848 + 2520 + 3960 (summands are all divisors of 27720).
		

Crossrefs

Cf. A083207 (Zumkeller numbers--numbers n whose divisors can be partitioned into two disjoint sets whose sums are both sigma(n)/2), A204830 (numbers n whose divisors can be partitioned into three disjoint sets whose sums are all sigma(n)/3).

Programs

  • Maple
    with(numtheory);with(combstruct);
    A204831:=proc(i)
    local S,R,Stop,Comb,c,d,k,m,n,s;
    for n from 1 to i do
      s:=sigma(n); c:=op(divisors(n));
      if (modp(s,4)=0 and 4*n<=s) then
         S:=1/4*s-n; R:=select(m->m<=S,[c]); Stop:=false;
         Comb:=iterstructs(Combination(R));
         while not (finished(Comb) or Stop) do
           Stop:=add(d,d=nextstruct(Comb))=S;
         od;
         if Stop then print(n); fi;
      fi;
    od;
    end:
    A204831(100000); # Paolo P. Lava, Jan 24 2012