A204844 Cyclic primes that are not absolute primes (A003459).
197, 719, 971, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331
Offset: 1
Examples
197, 719 and 971 are terms of the sequence, because all three numbers are prime, each number can be obtained by cyclically permuting the digits of one of the other numbers and there exist some composites, namely 791 and 917, that can be obtained from non-cyclic permutations of the digits of those three numbers. - _Felix Fröhlich_, Aug 10 2018
Links
- J. L. Boal and J. H. Bevis, Permutable primes, Mathematics Magazine, Vol. 55, No. 1 (1982), 38-41.
Programs
-
Mathematica
Select[Prime@ Range@ PrimePi[10^6], Union[d = IntegerDigits[#], {1,3,7,9}] == {1, 3, 7, 9} && AllTrue[ RotateLeft[d, #] & /@ Range@ IntegerLength@ #, PrimeQ@ FromDigits@ # &] && AnyTrue[ FromDigits /@ Permutations[d], CompositeQ] &] (* Giovanni Resta, Aug 10 2018 *)
-
PARI
eva(n) = subst(Pol(n), x, 10) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v is_circularprime(n) = my(d=digits(n), r=rot(d)); if(vecmin(d)==0, return(0), while(1, if(!ispseudoprime(eva(r)), return(0)); r=rot(r); if(r==d, return(1)))) find_index_a(vec) = my(r=#vec-1); while(1, if(vec[r] < vec[r+1], return(r)); r--; if(r==0, return(-1))) find_index_b(r, vec) = my(s=#vec); while(1, if(vec[r] < vec[s], return(s)); s--; if(s==r, return(-1))) switch_elements(vec, firstpos, secondpos) = my(g); g=vec[secondpos]; vec[secondpos]=vec[firstpos]; vec[firstpos] = g; vec reverse_order(vec, r) = my(v=[], w=[]); for(x=1, r, v=concat(v, vec[x])); for(y=r+1, #vec, w=concat(w, vec[y])); w=Vecrev(w); concat(v, w) next_permutation(vec) = my(r=find_index_a(vec)); if(r==-1, return(0), my(s=find_index_b(r, vec)); vec=switch_elements(vec, r, s); vec=reverse_order(vec, r)); vec is_permutable_prime(n) = if(n < 10, return(1)); my(d=vecsort(digits(n))); while(1, if(!ispseudoprime(eva(d)), return(0)); d=next_permutation(d); if(d==0, return(1))) forprime(p=1, , if(is_circularprime(p) && !is_permutable_prime(p), print1(p, ", "))) \\ Felix Fröhlich, Aug 05 2018
Extensions
More terms from Felix Fröhlich, Aug 05 2018
Comments