A204919 a(n) = q^2 where q is the least prime such that n divides A204916(n)^2 - q^2.
4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 25, 4, 9, 4, 9, 4, 49, 4, 9, 4, 25, 289, 25, 4, 49, 4, 9, 4, 49, 4, 25, 4, 121, 9, 49, 961, 49, 4, 9, 4, 121, 4, 25, 4, 289, 1681, 25, 4, 361, 4, 49, 2209, 529, 4, 9, 4, 289, 4, 49
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: # to get a(1)..a(N) A:= Vector(N): count:= 0: p:= 2: P:= 2: for i from 1 while count < N do p:= nextprime(p); ps:= p^2; P:= P, p; for j from 1 to i while count < N do qs:= P[j]^2; S:= convert(select(t -> t <= N and A[t]=0, numtheory:-divisors(ps-qs)),list); A[S]:= qs; count:= count + nops(S); od od: convert(A,list); # Robert Israel, May 04 2019
-
Mathematica
(See the program at A204916.)
Extensions
Name corrected by Robert Israel, May 04 2019
Comments