A205032 a(n) = (s(k)-s(j))/n, where (s(k),s(j)) is the least pair of oblong numbers (A002378) for which n divides their difference; a(n) = (1/n)*A205031(n).
4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..14025
Programs
-
Mathematica
(See the program at A205018.)
-
PARI
A205032(n) = for(k=2,oo,my(sk=k*(k+1)); for(j=1,k-1,if(!((sk-((j+1)*j))%n),return((sk-((j+1)*j))/n)))); \\ Antti Karttunen, Nov 06 2018
-
PARI
A205032(n) = for(k=sqrtint(n)-1,oo,my(sk=k*(k+1), d); for(j=1,k-1,d=(sk-((j+1)*j)); if(0==(d%n),return(d/n),if(d
Antti Karttunen, Nov 06 2018
Extensions
Definition edited and more terms from Antti Karttunen, Nov 06 2018
Comments