A205172 Primes p == 5 (mod 8) such that p + 2 is also prime.
5, 29, 101, 149, 197, 269, 461, 821, 1061, 1229, 1277, 1301, 1877, 1949, 1997, 2141, 2237, 2309, 2381, 2549, 2789, 3389, 3461, 3557, 3581, 3821, 3917, 4157, 4229, 4421, 4517, 4637, 5021, 5477, 5501, 5741, 6197, 6269, 6701, 6869, 7349, 7589, 7757, 7877
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(t -> isprime(t) and isprime(t+2), [seq(i,i=5..10000,8)]);# Robert Israel, Nov 25 2019
-
Mathematica
Select[ Prime@ Range@ 1000, Mod[#, 8] == 5 && PrimeQ[# + 2] &]
-
PARI
forprime(p=1, 7900, if(Mod(p, 8)==5 && ispseudoprime(p+2), print1(p, ", "))) \\ Felix Fröhlich, Nov 25 2019
Comments