A205337 Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 4.
0, 4, 12, 82, 454, 2912, 18652, 124299, 841400, 5800725, 40506816, 286137616, 2040430976, 14670243774, 106225269954, 773958961125, 5670067999156, 41742291894425, 308645064367896, 2291123920091484, 17067970534656790
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..2....3....2....4....4....4....1....2....4....3....3....1....2....3....2....4 ..3....5....6....3....0....5....0....4....6....1....5....0....3....1....0....2 ..6....1....2....2....1....3....3....6....3....4....3....1....6....2....1....5 ..2....2....1....1....3....4....1....4....4....2....4....2....4....3....4....2 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
Crossrefs
Cf. A205341.
Programs
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Binomial[i, l] Sum[(-1)^j Binomial[i - l, j] Binomial[-l + 4(-l - 2j + i) - j + i - 1, 4(-l - 2j + i) - j], {j, 0, (4(i - l))/9}] (-1)^l, {l, 0, i}] a[n - i], {i, 1, n}]/n]; a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
-
Maxima
a(n):=if n=0 then 1 else sum(sum(binomial(i,l)*sum((-1)^j*binomial(i-l,j)*binomial(-l+4*(-l-2*j+i)-j+i-1,4*(-l-2*j+i)-j),j,0,(4*(i-l))/9)*(-1)^l,l,0,i)*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 07 2017 */
Formula
a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0..(4*(i-l))/9}((-1)^j*binomial(i-l,j)*binomial(-l+4*(-l-2*j+i)-j+i-1,4*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - Vladimir Kruchinin, Apr 07 2017
Comments