A205337
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 4.
Original entry on oeis.org
0, 4, 12, 82, 454, 2912, 18652, 124299, 841400, 5800725, 40506816, 286137616, 2040430976, 14670243774, 106225269954, 773958961125, 5670067999156, 41742291894425, 308645064367896, 2291123920091484, 17067970534656790
Offset: 1
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....3....2....4....4....4....1....2....4....3....3....1....2....3....2....4
..3....5....6....3....0....5....0....4....6....1....5....0....3....1....0....2
..6....1....2....2....1....3....3....6....3....4....3....1....6....2....1....5
..2....2....1....1....3....4....1....4....4....2....4....2....4....3....4....2
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
- R. H. Hardin, Table of n, a(n) for n = 1..210
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
-
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Binomial[i, l] Sum[(-1)^j Binomial[i - l, j] Binomial[-l + 4(-l - 2j + i) - j + i - 1, 4(-l - 2j + i) - j], {j, 0, (4(i - l))/9}] (-1)^l, {l, 0, i}] a[n - i], {i, 1, n}]/n];
a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
-
a(n):=if n=0 then 1 else sum(sum(binomial(i,l)*sum((-1)^j*binomial(i-l,j)*binomial(-l+4*(-l-2*j+i)-j+i-1,4*(-l-2*j+i)-j),j,0,(4*(i-l))/9)*(-1)^l,l,0,i)*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 07 2017 */
A205336
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 3.
Original entry on oeis.org
0, 3, 6, 35, 138, 689, 3272, 16522, 83792, 434749, 2278888, 12093271, 64741330, 349470487, 1899418046, 10387322922, 57111322368, 315523027610, 1750681516380, 9751416039535, 54507046599094, 305650440453943, 1718956630038438
Offset: 1
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....3....3....1....3....1....1....3....3....2....1....3....1....3....3....3
..4....6....2....0....2....3....3....2....5....4....4....1....3....2....2....0
..2....5....5....3....4....4....2....3....4....1....2....2....0....4....0....2
..3....2....2....2....2....1....3....2....2....3....1....1....2....3....2....1
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
- R. H. Hardin, Table of n, a(n) for n = 1..210
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
-
a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, l] (Sum[(-1)^j Binomial[i - l, j] Binomial[-l + 3(-l - 2j + i) - j + i - 1, 3(-l - 2j + i) - j], {j, 0, (3(i - l))/7}]) (-1)^l, {l, 0, i}]) a[n - i], {i, 1, n}]/n];
a /@ Range[1, 23] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
-
a(n):=if n=0 then 1 else sum((sum(binomial(i,l)*(sum((-1)^j*binomial(i-l,j)*binomial(-l+3*(-l-2*j+i)-j+i-1,3*(-l-2*j+i)-j),j,0,(3*(i-l))/7))*(-1)^l,l,0,i))*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 07 2017 */
A205338
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 5.
Original entry on oeis.org
0, 5, 20, 160, 1130, 8927, 71630, 594405, 5025740, 43243674, 377127756, 3327001441, 29634744950, 266164547110, 2407763862342, 21918167505714, 200631620380132, 1845576127894008, 17052050519557200, 158176470846492722
Offset: 1
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..5....5....5....2....5....5....4....2....3....2....2....2....4....1....3....1
..8....6...10....3....8....4....6....1....5....5....6....5....7....4....1....4
..3....9....9....0....5....0....2....5....0....4....1....3....4....5....2....7
..1....4....5....3....2....2....3....2....1....3....4....4....2....3....1....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
-
a(n):=if n=0 then 1 else sum((sum(binomial(i,l)*(sum((-1)^j*binomial(i-l,j)*binomial(-l+5*(-l-2*j+i)-j+i-1,5*(-l-2*j+i)-j),j,0,(5*(i-l))/11))*(-1)^l,l,0,i))*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 07 2017 */
A205339
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 6.
Original entry on oeis.org
0, 6, 30, 277, 2370, 22297, 214724, 2133784, 21632020, 223143400, 2333651994, 24689732388, 263770658256, 2841616524516, 30835061022020, 336721385300276, 3697585562072924, 40805356360923728, 452314009660461816
Offset: 1
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....1....5....3....6....2....5....2....3....5....5....3....3....3....3....5
..1....3....4....1....4....5....8....4....5....2....9....2....0....7....1....4
..5....9....8....0....2....0....7....3....0....3....8....7....6...10....4....9
..2....6....5....2....3....4....6....5....2....5....4....5....1....5....5....5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
A205340
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 7.
Original entry on oeis.org
0, 7, 42, 441, 4424, 48335, 542850, 6285127, 74286702, 893407361, 10894937088, 134418087923, 1674757658798, 21042485711561, 266318361927208, 3392084001234202, 43447635519011920, 559277626577030221
Offset: 1
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....4....5....7....2....5....6....1....2....6....4....4....2....7....4....4
..5....5...10....9....7...12....8....0....8....4....9...11....8....1....9....5
.11...12....4...11....0...14....9....1...10....8....3....4...13....5....7....0
..6....6....5....5....6....7....4....4....4....7....7....5....7....2....1....4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
A205342
Number of length 5 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.
Original entry on oeis.org
2, 11, 35, 82, 160, 277, 441, 660, 942, 1295, 1727, 2246, 2860, 3577, 4405, 5352, 6426, 7635, 8987, 10490, 12152, 13981, 15985, 18172, 20550, 23127, 25911, 28910, 32132, 35585, 39277, 43216, 47410, 51867, 56595, 61602, 66896, 72485, 78377, 84580, 91102
Offset: 1
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....5....3....2....2....1....5....2....5....4....1....5....4....4....5....2
..0....8....6....4....6....6....1....7....1....9....6....7....5....2....8....5
..3....3....5....1....5....2....2....3....5....4....5....4....2....4....5....4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
A205343
Number of length 6 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.
Original entry on oeis.org
0, 24, 138, 454, 1130, 2370, 4424, 7588, 12204, 18660, 27390, 38874, 53638, 72254, 95340, 123560, 157624, 198288, 246354, 302670, 368130, 443674, 530288, 629004, 740900, 867100, 1008774, 1167138, 1343454, 1539030, 1755220, 1993424, 2255088
Offset: 1
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..5....4....3....4....2....4....3....5....5....3....5....4....5....1....1....1
..1....2....2....9....5....7....6....6....2....6....0....2....2....0....6....5
..5....0....5....8....1....3....7....8....6....4....5....0....1....2....9....9
..3....4....1....5....5....1....2....4....2....5....2....1....5....1....5....4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
A205344
Number of length 7 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.
Original entry on oeis.org
5, 93, 689, 2912, 8927, 22297, 48335, 94456, 170529, 289229, 466389, 721352, 1077323, 1561721, 2206531, 3048656, 4130269, 5499165, 7209113, 9320208, 11899223, 15019961, 18763607, 23219080, 28483385, 34661965, 41869053, 50228024
Offset: 1
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....5....3....5....1....1....5....4....3....5....4....5....1....3....4
..6....4...10....6....0....2....4....3....8....6...10....3....8....5....1....7
..8....1....5....1....2....0....8....6....7....5....6....6....7....1....5....6
..7....4....3....5....4....4....6....5....3....3....2....7....5....5....3....7
..4....3....5....2....1....3....1....2....2....1....4....5....1....2....2....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
A205345
Number of length 8 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.
Original entry on oeis.org
0, 272, 3272, 18652, 71630, 214724, 542850, 1211784, 2459988, 4633800, 8215988, 13857668, 22413586, 34980764, 52940510, 78003792, 112259976, 158228928, 218916480, 297873260, 399256886, 527897524, 689366810, 890050136, 1137222300
Offset: 1
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..5....3....5....2....2....2....2....3....5....3....1....2....4....2....3....4
..6....7....8....6....3....4....4....4....9....5....2....5....8....6....5....7
..7....8...11....7....4....3....2....7...12....1....0....4....7....4....6....8
.10....4....9....6....3....6....7....3....7....2....4....3....3....8....3....7
..6....5....4....4....0....5....3....6....3....7....6....0....1....3....1....8
..5....3....2....3....3....4....4....2....5....2....5....2....5....5....3....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
Showing 1-9 of 9 results.
Comments