cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A205337 Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 4.

Original entry on oeis.org

0, 4, 12, 82, 454, 2912, 18652, 124299, 841400, 5800725, 40506816, 286137616, 2040430976, 14670243774, 106225269954, 773958961125, 5670067999156, 41742291894425, 308645064367896, 2291123920091484, 17067970534656790
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2012

Keywords

Comments

Column 4 of A205341.
Number of excursions (walks starting at the origin, ending on the x-axis, and never go below the x-axis in between) with n steps from {-4,-3,-2,-1,1,2,3,4}. - David Nguyen, Dec 20 2016

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....3....2....4....4....4....1....2....4....3....3....1....2....3....2....4
..3....5....6....3....0....5....0....4....6....1....5....0....3....1....0....2
..6....1....2....2....1....3....3....6....3....4....3....1....6....2....1....5
..2....2....1....1....3....4....1....4....4....2....4....2....4....3....4....2
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Crossrefs

Cf. A205341.

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Binomial[i, l] Sum[(-1)^j Binomial[i - l, j] Binomial[-l + 4(-l - 2j + i) - j + i - 1, 4(-l - 2j + i) - j], {j, 0, (4(i - l))/9}] (-1)^l, {l, 0, i}] a[n - i], {i, 1, n}]/n];
    a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=0 then 1 else sum(sum(binomial(i,l)*sum((-1)^j*binomial(i-l,j)*binomial(-l+4*(-l-2*j+i)-j+i-1,4*(-l-2*j+i)-j),j,0,(4*(i-l))/9)*(-1)^l,l,0,i)*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 07 2017 */

Formula

a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0..(4*(i-l))/9}((-1)^j*binomial(i-l,j)*binomial(-l+4*(-l-2*j+i)-j+i-1,4*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - Vladimir Kruchinin, Apr 07 2017

A205336 Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 3.

Original entry on oeis.org

0, 3, 6, 35, 138, 689, 3272, 16522, 83792, 434749, 2278888, 12093271, 64741330, 349470487, 1899418046, 10387322922, 57111322368, 315523027610, 1750681516380, 9751416039535, 54507046599094, 305650440453943, 1718956630038438
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2012

Keywords

Comments

Column 3 of A205341.
Number of excursions (walks starting at the origin, ending on the x-axis, and never go below the x-axis in between) with n steps from {-3,-2,-1,1,2,3}. - David Nguyen, Dec 20 2016

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....3....3....1....3....1....1....3....3....2....1....3....1....3....3....3
..4....6....2....0....2....3....3....2....5....4....4....1....3....2....2....0
..2....5....5....3....4....4....2....3....4....1....2....2....0....4....0....2
..3....2....2....2....2....1....3....2....2....3....1....1....2....3....2....1
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, l] (Sum[(-1)^j Binomial[i - l, j] Binomial[-l + 3(-l - 2j + i) - j + i - 1, 3(-l - 2j + i) - j], {j, 0, (3(i - l))/7}]) (-1)^l, {l, 0, i}]) a[n - i], {i, 1, n}]/n];
    a /@ Range[1, 23] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=0 then 1 else sum((sum(binomial(i,l)*(sum((-1)^j*binomial(i-l,j)*binomial(-l+3*(-l-2*j+i)-j+i-1,3*(-l-2*j+i)-j),j,0,(3*(i-l))/7))*(-1)^l,l,0,i))*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 07 2017 */

Formula

a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0=(3*(i-l))/7}((-1)^j*binomial(i-l,j)*binomial(-l+3*(-l-2*j+i)-j+i-1,3*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - Vladimir Kruchinin, Apr 07 2017

A205338 Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 5.

Original entry on oeis.org

0, 5, 20, 160, 1130, 8927, 71630, 594405, 5025740, 43243674, 377127756, 3327001441, 29634744950, 266164547110, 2407763862342, 21918167505714, 200631620380132, 1845576127894008, 17052050519557200, 158176470846492722
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2012

Keywords

Comments

Column 5 of A205341.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..5....5....5....2....5....5....4....2....3....2....2....2....4....1....3....1
..8....6...10....3....8....4....6....1....5....5....6....5....7....4....1....4
..3....9....9....0....5....0....2....5....0....4....1....3....4....5....2....7
..1....4....5....3....2....2....3....2....1....3....4....4....2....3....1....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Programs

  • Maxima
    a(n):=if n=0 then 1 else sum((sum(binomial(i,l)*(sum((-1)^j*binomial(i-l,j)*binomial(-l+5*(-l-2*j+i)-j+i-1,5*(-l-2*j+i)-j),j,0,(5*(i-l))/11))*(-1)^l,l,0,i))*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 07 2017 */

Formula

a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0..(5*(i-l))/11}((-1)^j*binomial(i-l,j)*binomial(-l+5*(-l-2*j+i)-j+i-1,5*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - Vladimir Kruchinin, Apr 07 2017

A205339 Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 6.

Original entry on oeis.org

0, 6, 30, 277, 2370, 22297, 214724, 2133784, 21632020, 223143400, 2333651994, 24689732388, 263770658256, 2841616524516, 30835061022020, 336721385300276, 3697585562072924, 40805356360923728, 452314009660461816
Offset: 1

Views

Author

R. H. Hardin Jan 26 2012

Keywords

Comments

Column 6 of A205341

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....1....5....3....6....2....5....2....3....5....5....3....3....3....3....5
..1....3....4....1....4....5....8....4....5....2....9....2....0....7....1....4
..5....9....8....0....2....0....7....3....0....3....8....7....6...10....4....9
..2....6....5....2....3....4....6....5....2....5....4....5....1....5....5....5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

A205340 Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 7.

Original entry on oeis.org

0, 7, 42, 441, 4424, 48335, 542850, 6285127, 74286702, 893407361, 10894937088, 134418087923, 1674757658798, 21042485711561, 266318361927208, 3392084001234202, 43447635519011920, 559277626577030221
Offset: 1

Views

Author

R. H. Hardin Jan 26 2012

Keywords

Comments

Column 7 of A205341

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....4....5....7....2....5....6....1....2....6....4....4....2....7....4....4
..5....5...10....9....7...12....8....0....8....4....9...11....8....1....9....5
.11...12....4...11....0...14....9....1...10....8....3....4...13....5....7....0
..6....6....5....5....6....7....4....4....4....7....7....5....7....2....1....4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

A205342 Number of length 5 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.

Original entry on oeis.org

2, 11, 35, 82, 160, 277, 441, 660, 942, 1295, 1727, 2246, 2860, 3577, 4405, 5352, 6426, 7635, 8987, 10490, 12152, 13981, 15985, 18172, 20550, 23127, 25911, 28910, 32132, 35585, 39277, 43216, 47410, 51867, 56595, 61602, 66896, 72485, 78377, 84580, 91102
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2012

Keywords

Comments

Row 4 of A205341.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....5....3....2....2....1....5....2....5....4....1....5....4....4....5....2
..0....8....6....4....6....6....1....7....1....9....6....7....5....2....8....5
..3....3....5....1....5....2....2....3....5....4....5....4....2....4....5....4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Crossrefs

Cf. A205341.

Formula

Empirical: a(n) = (4/3)*n^3 - (1/2)*n^2 + (7/6)*n.
Conjectures from Colin Barker, Jun 11 2018: (Start)
G.f.: x*(2 + 3*x + 3*x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A205343 Number of length 6 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.

Original entry on oeis.org

0, 24, 138, 454, 1130, 2370, 4424, 7588, 12204, 18660, 27390, 38874, 53638, 72254, 95340, 123560, 157624, 198288, 246354, 302670, 368130, 443674, 530288, 629004, 740900, 867100, 1008774, 1167138, 1343454, 1539030, 1755220, 1993424, 2255088
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2012

Keywords

Comments

Row 5 of A205341.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..5....4....3....4....2....4....3....5....5....3....5....4....5....1....1....1
..1....2....2....9....5....7....6....6....2....6....0....2....2....0....6....5
..5....0....5....8....1....3....7....8....6....4....5....0....1....2....9....9
..3....4....1....5....5....1....2....4....2....5....2....1....5....1....5....4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Crossrefs

Cf. A205341.

Formula

Empirical: a(n) = (23/12)*n^4 - (1/2)*n^3 + (1/12)*n^2 - (3/2)*n.
Conjectures from Colin Barker, Jun 11 2018: (Start)
G.f.: 2*x^2*(12 + 9*x + 2*x^2) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A205344 Number of length 7 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.

Original entry on oeis.org

5, 93, 689, 2912, 8927, 22297, 48335, 94456, 170529, 289229, 466389, 721352, 1077323, 1561721, 2206531, 3048656, 4130269, 5499165, 7209113, 9320208, 11899223, 15019961, 18763607, 23219080, 28483385, 34661965, 41869053, 50228024
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2012

Keywords

Comments

Row 6 of A205341.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....5....3....5....1....1....5....4....3....5....4....5....1....3....4
..6....4...10....6....0....2....4....3....8....6...10....3....8....5....1....7
..8....1....5....1....2....0....8....6....7....5....6....6....7....1....5....6
..7....4....3....5....4....4....6....5....3....3....2....7....5....5....3....7
..4....3....5....2....1....3....1....2....2....1....4....5....1....2....2....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Crossrefs

Cf. A205341.

Formula

Empirical: a(n) = (44/15)*n^5 - (5/12)*n^4 + (5/12)*n^2 + (31/15)*n.
Conjectures from Colin Barker, Jun 11 2018: (Start)
G.f.: x*(5 + 63*x + 206*x^2 + 73*x^3 + 5*x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A205345 Number of length 8 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than n.

Original entry on oeis.org

0, 272, 3272, 18652, 71630, 214724, 542850, 1211784, 2459988, 4633800, 8215988, 13857668, 22413586, 34980764, 52940510, 78003792, 112259976, 158228928, 218916480, 297873260, 399256886, 527897524, 689366810, 890050136, 1137222300
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2012

Keywords

Comments

Row 7 of A205341.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..5....3....5....2....2....2....2....3....5....3....1....2....4....2....3....4
..6....7....8....6....3....4....4....4....9....5....2....5....8....6....5....7
..7....8...11....7....4....3....2....7...12....1....0....4....7....4....6....8
.10....4....9....6....3....6....7....3....7....2....4....3....3....8....3....7
..6....5....4....4....0....5....3....6....3....7....6....0....1....3....1....8
..5....3....2....3....3....4....4....2....5....2....5....2....5....5....3....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Crossrefs

Cf. A205341.

Formula

Empirical: a(n) = (841/180)*n^6 - (1/3)*n^5 - (19/36)*n^4 + (1/3)*n^3 - (103/90)*n^2 - 3*n.
Conjectures from Colin Barker, Jun 11 2018: (Start)
G.f.: 2*x^2*(136 + 684*x + 730*x^2 + 129*x^3 + 3*x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Showing 1-9 of 9 results.