cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205480 G.f: exp( Sum_{n>=1} x^n/n * Product_{d|n} (1 + d*x^(n/d))^d ).

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 76, 242, 852, 3016, 11262, 47004, 204761, 894673, 4134909, 20370101, 101904474, 521459464, 2813783214, 15616060213, 87143803196, 502477538546, 3039137586808, 18763942581733, 116737580008529, 742909490860950, 4846956807516551
Offset: 0

Views

Author

Paul D. Hanna, Jan 27 2012

Keywords

Comments

Note: exp( Sum_{n>=1} x^n/n * Product_{d|n} (1 + x^(n/d))^d ) does not yield an integer series.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 27*x^5 + 76*x^6 + 242*x^7 + ...
By definition:
log(A(x)) = x*(1+x) + x^2*(1+x^2)*(1+2*x)^2/2 + x^3*(1+x^3)*(1+3*x)^3/3 + x^4*(1+x^4)*(1+2*x^2)^2*(1+4*x)^4/4 + x^5*(1+x^5)*(1+5*x)^5/5 + x^6*(1+x^6)*(1+2*x^3)^2*(1+3*x^2)^3*(1+6*x)^6/6 + ...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 23*x^4/4 + 76*x^5/5 + 249*x^6/6 + 974*x^7/7 + 4151*x^8/8 + 16558*x^9/9 + ... + A205481(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    max = 30; s = Exp[Sum[(x^n/n)*Product[(1+d*x^(n/d))^d, {d, Divisors[n]}], {n, 1, max}]] + O[x]^max; CoefficientList[s , x] (* Jean-François Alcover, Dec 23 2015 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*exp(sumdiv(m, d, d*log(1+d*x^(m/d)+x*O(x^n)))))), n)}

Formula

Logarithmic derivative yields A205481.