cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205490 G.f.: exp( Sum_{n>=1} (x^n/n) / Product_{d|n} (1 - d*x^d)^n ).

Original entry on oeis.org

1, 1, 2, 4, 10, 22, 57, 134, 331, 797, 1995, 4879, 12367, 31056, 79315, 202370, 521575, 1339934, 3456778, 8885907, 22848211, 58576714, 150117209, 384135566, 983789032, 2522109065, 6485104365, 16736092434, 43408268497, 113201300205, 296975753940, 783578962587
Offset: 0

Views

Author

Paul D. Hanna, Jan 27 2012

Keywords

Comments

Note: exp( Sum_{n>=1} (x^n/n) / Product_{d|n} (1 - x^d)^n ) does not yield an integer series.

Examples

			 G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 22*x^5 + 57*x^6 + 134*x^7 +...
By definition:
log(A(x)) = x/(1-x) + (x^2/2)/((1-x)^2*(1-2*x^2)^2) + (x^3/3)/((1-x)^3*(1-3*x^3)^3) + (x^4/4)/((1-x)^4*(1-2*x^2)^4*(1-4*x^4)^4) + (x^5/5)/((1-x)^5*(1-5*x^5)^5) + (x^6/6)/((1-x)^6*(1-2*x^2)^6*(1-3*x^3)^6*(1-6*x^6)^6) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 23*x^4/4 + 51*x^5/5 + 165*x^6/6 + 386*x^7/7 + 1039*x^8/8 + 2554*x^9/9 +...+ A205491(n)*x^n/n +...
		

Crossrefs

Formula

Logarithmic derivative yields A205491.