cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205496 Convolution related to array A205497 and to generating functions for the rows of the array form of A050446.

Original entry on oeis.org

1, 79, 2475, 47191, 656683, 7349140, 70148989, 593513485, 4571277561, 32672880245, 219830952888, 1407595988962, 8650512982826, 51368774778763, 296342413123845, 1668132449230997, 9195464663247238, 49787415018534288, 265430586786327769
Offset: 0

Views

Author

L. Edson Jeffery, Jan 30 2012

Keywords

Comments

See array A205497 regarding association of this sequence with generating functions for the rows of the array form of A050446.

Crossrefs

Formula

G.f.: F(x) = (1 + 29*x - 330*x^2 - 1870*x^3 + 28792*x^4 - 28880*x^5 - 658872*x^6 + 1808035*x^7 + 7251417*x^8 - 30049286*x^9 - 53844318*x^10 + 331611771*x^11 + 172019006*x^12 - 2314667923*x^13 - 44340353*x^14 + 12301024850*x^15 - 283356562*x^16 - 53520778564*x^17 + 21918429228*x^18 + 188280737400*x^19 - 99256863420*x^20 - 537933519143*x^21 + 304479953092*x^22 + 1292735746371*x^23 - 685767992532*x^24 - 2703731985407*x^25 + 1220124121648*x^26 + 4969059486596*x^27 - 1817137951816*x^28 - 7940770334300*x^29 + 2310666239334*x^30 + 10897173663437*x^31 - 242841325861*x^32 - 12794627581139*x^33 + 1919519246791*x^34 + 12918502357203*x^35 - 852890650171*x^36 -11317650709986*x^37 - 313858871781*x^38 + 8665013739391*x^39 + 1068808054156*x^40 - 5804674396693*x^41 - 1231795216164*x^42 + 3382179875958*x^43 + 984955686298*x^44 - 1694171598050*x^45 - 619939090864*x^46 + 718589694092*x^47 + 323730198889*x^48 - 253619875999*x^49 - 144187648137*x^50 + 72968474423*x^51 + 55421646471*x^52 - 16658211415*x^53 - 18346712946*x^54 + 2894246774*x^55 + 5160729532*x^56 - 351795527*x^57 - 1206372119*x^58 + 22006791*x^59 + 227332930*x^60 + 1758161*x^61 - 33060926*x^62 - 881244*x^63 + 3436739*x^64 + 218431*x^65 - 208580*x^66 - 43625*x^67 - 299*x^68 + 6491*x^69 + 1284*x^70 - 646*x^71 - 104*x^72 + 38*x^73 +3*x^74 -x^75) / ((1-x)^7 * (1-x-x^2)^6 * (1-2*x-x^2+x^3)^5 * (1-2*x-3*x^2+x^3+x^4)^4 * (1-3*x-3*x^2+4*x^3+x^4-x^5)^3 * (1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)^2 * (1-4*x-6*x^2+10*x^3+5*x^4-6*x^5-x^6+x^7)).
CONJECTURE 1. a(n) = M_{n,6} = M_{6,n}, where M = A205497.
CONJECTURE 2. Let w=2*cos(Pi/15). Then lim_{n->oo} a(n+1)/a(n) = w^6-5*w^4+6*w^2-1 = spectral radius of the 7 X 7 unit-primitive matrix (see [Jeffery]) A_{15,6} = [0,0,0,0,0,0,1; 0,0,0,0,0,1,1; 0,0,0,0,1,1,1; 0,0,0,1,1,1,1; 0,0,1,1,1,1,1; 0,1,1,1,1,1,1; 1,1,1,1,1,1,1].