A205497 Triangle read by rows: Zig-zag Eulerian number triangle T(n, k).
1, 1, 1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 14, 31, 14, 1, 1, 26, 109, 109, 26, 1, 1, 46, 334, 623, 334, 46, 1, 1, 79, 937, 2951, 2951, 937, 79, 1, 1, 133, 2475, 12331, 20641, 12331, 2475, 133, 1, 1, 221, 6267, 47191, 123216, 123216, 47191, 6267, 221, 1
Offset: 0
Examples
From _Kyle Petersen_, Jun 02 2024: (Start) Triangle T(n, k) begins: 1; 1; 1; 1, 1; 1, 3, 1; 1, 7, 7, 1; 1, 14, 31, 14, 1; 1, 26, 109, 109, 26, 1; 1, 46, 334, 623, 334, 46, 1; 1, 79, 937, 2951, 2951, 937, 79, 1; ... For n=4, the naturally labeled zig-zag poset 1<3>2<4 has five linear extensions: 1234, 1243, 2134, 2143, 2413, and their descent numbers are (respectively) 0, 1, 1, 2, 1. Thus T(4,0) = 1, T(4,1) = 3, and T(4,2) = 1. Also with n=4, there are five up-down permutations: 1324, 1423, 2314, 2413, 3412, and their big return numbers are (respectively) 0, 1, 1, 2, 1. (End) Without the first two ones the data can be seen as an array M read by antidiagonals. Christopher H. Gribble kindly calculated the first 100 antidiagonals which starts as: 1, 1, 1, 1, 1, 1, ... 1, 3, 7, 14, 26, 46, ... 1, 7, 31, 109, 334, 937, ... 1, 14, 109, 623, 2951, 12331, ... 1, 26, 334, 2951, 20641, 123216, ... 1, 46, 937, 12331, 123216, 1019051, ... ... The antidiagonals of M written as the rows of a triangle, yielding then, by the conjectures and the definition of H_m(x), row m = 7 of table A050446 has generating function H_7(x)/(1-x)^7 = (Sum_{j=0..4} M_{4-j,j}*x^j)/(1-x)^7 = (1 + 14*x + 31*x^2 + 14*x^3 + x^4)/(1-x)^7.
Links
- Jane Ivy Coons and Seth Sullivant, The h*-polynomial of the order polytope of the zig-zag poset, arXiv:1901.07443 [math.CO], 2019.
- L. Edson Jeffery, Unit-primitive matrices
- Hyeong-Kwan Ju, On the sequence generated by a certain type of matrices, Honam Math. J. 39, No. 4, 665-675 (2017).
- Daeseok Lee and Hyeong-Kwan Ju, An Extension of Hibi's palindromic theorem, arXiv preprint arXiv:1503.05658 [math.CO], 2015.
- Peter Luschny, Illustrating the polynomials.
- T. Kyle Petersen and Yan Zhuang, Zig-zag Eulerian polynomials, arXiv:2403.07181 [math.CO], 2024.
- Igor Pak, Boris Shapiro, Ilya Smirnov, and Ken-ichi Yoshida, Hilbert-Kunz multiplicity of quadrics via the Ehrhart theory, Stockholm Univ. (Sweden, 2025). See p. 5.
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission] See p. 31.
- Guoce Xin and Yueming Zhong, Proving some conjectures on Kekulé numbers for certain benzenoids by using Chebyshev polynomials, arXiv:2201.02376 [math.CO], 2022.
Crossrefs
Programs
-
Maple
Gn := proc(n) local F; if n = 0 then p*q*x/(1 - q*x); elif n > 0 then F := Gn(n - 1); simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))); fi; end: Zn := proc(n) expand(simplify(subs({p = 1, q = 1}, Gn(n))*(1 - x)^(n + 1))) end: seq( coeffs(Zn(n)), n=0..15); # Kyle Petersen, Jun 02 2024 # Alternative: A205497row := proc(n) local k, j; ifelse(n < 2, 1, seq(add((-1)^j * binomial(n + 1, j) * A050446(n, k - j), j = 0..k), k = 0..n-2)) end: # Peter Luschny, Jun 17 2024
-
Mathematica
Gn[n_] := Module[{F}, If[n == 0, p*q*x/(1-q*x), If[n > 0, F = Gn[n-1]; Simplify[p/(p-q)*(ReplaceAll[F, {p -> q, q -> p}] - ReplaceAll[F, p -> q])]]]]; Zn[n_] := Expand[Simplify[ReplaceAll[Gn[n], {p -> 1, q -> 1}]*(1-x)^(n+1)]]; Table[Rest@CoefficientList[Zn[n], x], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jun 04 2024, after Kyle Petersen *)
-
Python
from functools import cache from math import comb as binomial @cache def S(n, k): return (S(n, k - 1) + sum(S(2 * j, k - 1) * S(n - 1 - 2 * j, k) for j in range(1 + (n - 1) // 2)) if k > 0 else 1) def A205497(dim): # returns [row(0), ..., row(dim-1)] if dim < 4: return [[1]] * dim Y = [[0 for _ in range(n - 2)] for n in range(dim + 1)] for n in range(dim + 1): for k in range(n - 2): for j in range(k + 1): Y[n][k] += (-1)**j * binomial(n, j) * S(n - 1, k - j) Y[1] = Y[2] = [1] return Y[1::] print(A205497(9)) # Peter Luschny, Jun 14 2024
Formula
Conjecture: 5.1. G.f. for column 0 of M is 1/(1-x) (A000012).
Conjecture: 5.2. G.f. for column 1 of M is 1/((1-x)^2*(1-x-x^2)) (A001924).
Conjecture: 5.3. G.f. for column 2 of M is (1 - x^2 - x^3 - x^4 + x^5)/((1-x)^3*(1-x-x^2)^2*(1 - 2*x - x^2 + x^3)) (A205492).
Conjecture: 5.4. G.f. for column 3 of M is (1 + x - 6*x^2 - 15*x^3 + 21*x^4 + 35*x^5 - 13*x^6 - 51*x^7 + 3*x^8 + 21*x^9 + 5*x^10 + x^11 - 5*x^12 - x^13 - x^14)/((1-x)^4*(1-x-x^2)^3*(1 - 2*x - x^2 + x^3)^2*(1 - 2*x - 3*x^2 + x^3 + x^4)) (A205493).
Conjecture: 5.5. G.f. for column 4 of M is (1 + 4*x - 31*x^2 - 67*x^3 + 348*x^4 + 418*x^5 - 1893*x^6 - 1084*x^7 + 4326*x^8 + 4295*x^9 - 7680*x^10 - 9172*x^11 + 9104*x^12 + 11627*x^13 - 5483*x^14 - 10773*x^15 + 1108*x^16 + 7255*x^17 + 315*x^18 - 3085*x^19 - 228*x^20 + 669*x^21 + 102*x^22 - 23*x^23 - 45*x^24 - 16*x^25 + 11*x^26 + 2*x^27 - x^28)/((1-x)^5*(1-x-x^2)^4*(1 - 2*x - x^2 + x^3)^3*(1 - 2*x - 3*x^2 + x^3 + x^4)^2*(1 - 3*x - 3*x^2 + 4*x^3 + x^4 - x^5)) (A205494).
Extensions
Two 1's prepended and new name by Kyle Petersen Jun 02 2024
Edited by Peter Luschny, Jun 02 2024
Comments