A205558 (A204898)/2 = (prime(k)-prime(j))/2; A086802 without its zeros.
1, 2, 1, 4, 3, 2, 5, 4, 3, 1, 7, 6, 5, 3, 2, 8, 7, 6, 4, 3, 1, 10, 9, 8, 6, 5, 3, 2, 13, 12, 11, 9, 8, 6, 5, 3, 14, 13, 12, 10, 9, 7, 6, 4, 1, 17, 16, 15, 13, 12, 10, 9, 7, 4, 3, 19, 18, 17, 15, 14, 12, 11, 9, 6, 5, 2, 20, 19, 18, 16, 15, 13, 12, 10, 7, 6, 3, 1, 22, 21
Offset: 1
Keywords
Examples
Writing prime(k) as p(k), p(3)-p(2)=5-3=2 p(4)-p(2)=7-3=4 p(4)-p(3)=7-5=2 p(5)-p(2)=11-3=8 p(5)-p(3)=11-5=6 p(5)-p(4)=11-7=4, so that the first 6 terms of A205558 are 1,2,1,4,3,2. The sequence can be regarded as a rectangular array in which row n is given by [prime(n+2+k)-prime(n+1)]/2; a northwest corner follows: 1...2...4...5...7...8....10...13...14...17...19...20 1...3...4...6...7...9....12...13...16...18...19...21 2...3...5...6...8...11...12...15...17...18...20...23 1...3...4...6...9...10...13...15...16...18...21...24 2...3...5...8...9...12...14...15...17...20...23...24 1...3...6...7...10..12...13...15...18...21...22...25 2...5...6...9...11..12...14...17...20...21...24...26 - _Clark Kimberling_, Sep 29 2013
Programs
-
Mathematica
s[n_] := s[n] = Prime[n]; z1 = 200; z2 = 80; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] (* A000040 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204890 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 2; t = d[c] (* A080036 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A133196 *) Table[j[n], {n, 1, z2}] (* A131818 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204898 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205558 *)
Comments