A205769 Given an equilateral triangle T, partition each side (with the same orientation) into segments exhibiting the Golden Ratio. Let t be the resulting internal equilateral triangle t. Sequence gives decimal expansion of ratio of areas T/t.
3, 4, 2, 7, 0, 5, 0, 9, 8, 3, 1, 2, 4, 8, 4, 2, 2, 7, 2, 3, 0, 6, 8, 8, 0, 2, 5, 1, 5, 4, 8, 4, 5, 7, 1, 7, 6, 5, 8, 0, 4, 6, 3, 7, 6, 9, 7, 0, 8, 6, 4, 4, 2, 9, 3, 2, 0, 3, 1, 7, 2, 9, 3, 4, 0, 5, 7, 8, 9, 0, 6, 9, 4, 2, 2, 8, 3, 5, 3, 6, 7, 4, 5, 6, 0, 8, 1, 0, 8, 0, 6, 2, 8, 4, 0, 8, 6, 7, 0, 6, 2, 2, 7, 1, 3
Offset: 1
Examples
3.427050983124842272306880251548457176580463769708644293203172934...
References
- Alfred S. Posamentier and Ingmar Lehmann, Phi, The Glorious Golden Ratio, Prometheus Books, 2011.
Crossrefs
Cf. A001622.
Programs
-
Mathematica
x = GoldenRatio; RealDigits[x^4/(1 - x + x^2), 10, 111][[1]]
-
PARI
(1+sqrt(5))^4/32 \\ Charles R Greathouse IV, Dec 12 2013
Formula
Equals phi^2/(1 + 1/phi^2 - 1/phi).
Equals (phi^4)/2 = 1+3*phi/2. - Clark Kimberling, Oct 24 2012
Comments