cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A379135 Decimal expansion of the midradius of a pentakis dodecahedron with unit shorter edge length.

Original entry on oeis.org

1, 4, 7, 5, 6, 8, 3, 6, 6, 1, 0, 4, 1, 6, 1, 4, 0, 9, 0, 7, 6, 8, 9, 6, 0, 0, 8, 3, 8, 4, 9, 4, 8, 5, 7, 2, 5, 5, 2, 6, 8, 2, 1, 2, 5, 6, 5, 6, 9, 5, 4, 8, 0, 9, 7, 7, 3, 4, 3, 9, 0, 9, 7, 8, 0, 1, 9, 2, 9, 6, 8, 9, 8, 0, 7, 6, 1, 1, 7, 8, 9, 1, 5, 2, 0, 2, 7, 0, 2, 6
Offset: 1

Views

Author

Paolo Xausa, Dec 17 2024

Keywords

Comments

The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.

Examples

			1.4756836610416140907689600838494857255268212565695...
		

Crossrefs

Cf. A379132 (surface area), A379133 (volume), A379134 (inradius), A379136 (dihedral angle).
Cf. A205769 (midradius + 1 of a truncated icosahedron with unit edge length).
Cf. A010499.

Programs

  • Mathematica
    First[RealDigits[(11 + Sqrt[45])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["PentakisDodecahedron", "Midradius"], 10, 100]]
  • PARI
    (11 + 3*sqrt(5))/12 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals (11 + 3*sqrt(5))/12 = (11 + A010499)/12.

A377697 Decimal expansion of the midradius of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

2, 9, 2, 7, 0, 5, 0, 9, 8, 3, 1, 2, 4, 8, 4, 2, 2, 7, 2, 3, 0, 6, 8, 8, 0, 2, 5, 1, 5, 4, 8, 4, 5, 7, 1, 7, 6, 5, 8, 0, 4, 6, 3, 7, 6, 9, 7, 0, 8, 6, 4, 4, 2, 9, 3, 2, 0, 3, 1, 7, 2, 9, 3, 4, 0, 5, 7, 8, 9, 0, 6, 9, 4, 2, 2, 8, 3, 5, 3, 6, 7, 4, 5, 6, 0, 8, 1, 0, 8, 0
Offset: 1

Views

Author

Paolo Xausa, Nov 05 2024

Keywords

Examples

			2.9270509831248422723068802515484571765804637697...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume), A377696 (circumradius), A377698 (Dehn invariant, negated).
Cf. A239798 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[(5 + Sqrt[45])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Midradius"], 10, 100]]

Formula

Equals (5 + 3*sqrt(5))/4 = (5 + A010499)/4.
Equals A205769 - 1/2.

A377750 Decimal expansion of the surface area of a truncated icosahedron with unit edge length.

Original entry on oeis.org

7, 2, 6, 0, 7, 2, 5, 3, 0, 3, 4, 1, 3, 3, 9, 2, 1, 8, 7, 8, 9, 3, 1, 5, 3, 3, 9, 7, 3, 8, 3, 9, 4, 8, 6, 2, 0, 1, 1, 7, 2, 6, 4, 7, 6, 5, 4, 4, 3, 3, 7, 9, 8, 7, 9, 2, 1, 5, 9, 3, 4, 5, 8, 6, 7, 8, 4, 4, 4, 1, 8, 4, 1, 3, 7, 7, 1, 5, 9, 5, 8, 8, 8, 4, 2, 3, 6, 8, 0, 4
Offset: 2

Views

Author

Paolo Xausa, Nov 06 2024

Keywords

Examples

			72.60725303413392187893153397383948620117264765443...
		

Crossrefs

Cf. A377751 (volume), A377752 (circumradius), A205769 (midradius + 1), A377787 (Dehn invariant).
Cf. A010527 (analogous for a regular icosahedron, with offset 1).

Programs

  • Mathematica
    First[RealDigits[3*(10*Sqrt[3] + Sqrt[25 + Sqrt[500]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosahedron", "SurfaceArea"], 10, 100]]
  • PARI
    3*(10*sqrt(3) + sqrt(25 + 10*sqrt(5))) \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals 3*(10*sqrt(3) + sqrt(25 + 10*sqrt(5))) = 30*A002194 + 3*sqrt(25 + 10*A002163).
Equals 30*(A002194 + A375067).

A377751 Decimal expansion of the volume of a truncated icosahedron with unit edge length.

Original entry on oeis.org

5, 5, 2, 8, 7, 7, 3, 0, 7, 5, 8, 1, 2, 2, 7, 3, 9, 2, 3, 6, 3, 9, 8, 6, 1, 6, 9, 3, 8, 8, 6, 1, 2, 1, 9, 5, 3, 0, 9, 8, 6, 6, 4, 7, 3, 6, 5, 8, 2, 3, 9, 0, 1, 5, 3, 5, 9, 1, 2, 1, 4, 5, 3, 8, 8, 1, 6, 3, 0, 9, 9, 9, 5, 0, 6, 0, 6, 4, 0, 2, 6, 6, 8, 7, 0, 4, 9, 5, 4, 8
Offset: 2

Views

Author

Paolo Xausa, Nov 07 2024

Keywords

Examples

			55.28773075812273923639861693886121953098664736582...
		

Crossrefs

Cf. A377750 (surface area), A377752 (circumradius), A205769 (midradius + 1), A377787 (Dehn invariant).
Cf. A102208 (analogous for a regular icosahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[(125 + 43*Sqrt[5])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosahedron", "Volume"], 10, 100]]
  • PARI
    (125 + 43*sqrt(5))/4 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals (125 + 43*sqrt(5))/4 = (125 + 43*A002163)/4.

A374883 Decimal expansion of phi*(2*phi + 1) (i.e., (7 + 3*sqrt(5))/2), where phi is the golden ratio.

Original entry on oeis.org

6, 8, 5, 4, 1, 0, 1, 9, 6, 6, 2, 4, 9, 6, 8, 4, 5, 4, 4, 6, 1, 3, 7, 6, 0, 5, 0, 3, 0, 9, 6, 9, 1, 4, 3, 5, 3, 1, 6, 0, 9, 2, 7, 5, 3, 9, 4, 1, 7, 2, 8, 8, 5, 8, 6, 4, 0, 6, 3, 4, 5, 8, 6, 8, 1, 1, 5, 7, 8, 1, 3, 8, 8, 4, 5, 6, 7, 0, 7, 3, 4, 9, 1, 2, 1, 6, 2
Offset: 1

Views

Author

Marco Ripà, Jul 22 2024

Keywords

Comments

The author conjectures that this is the minimum volume of an axis-aligned bounding box which includes the shortest minimum-link circuit joining all the vertices of the cube {0,1}^3 (i.e., the closed polygonal chains consisting of exactly 6 edges visiting all the points of the set {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}).
In detail, such a circuit of 6 links is given by (1/2,1+phi,1/2)-((1-phi)/2,0,(1+phi)/2)-((phi+1)/2,0, (1-phi)/2)-(1/2,1+phi,1/2)-((phi+1)/2,0,(phi+1)/2)-((1-phi)/2,0,(1-phi)/2(1/2,1+phi,1/2), where phi := (1+sqrt(5))/2 (see A001622).
Then, phi*(2*phi + 1) = phi^2*(phi + 1) since phi - 1 = 1/phi.

Examples

			6.8541019662496845446137605030969...
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.

Crossrefs

Programs

  • Mathematica
    RealDigits[3*GoldenRatio + 2, 10, 120][[1]] (* Amiram Eldar, Jul 23 2024 *)

Formula

Equals (7 + 3*sqrt(5))/2.
Equals phi^2*(phi + 1), where phi = (1 + sqrt(5))/2.
Equals A104457^2 = 2*A205769. - Hugo Pfoertner, Jul 22 2024
Equals A090550 + 1 = A134973 + 5. - Amiram Eldar, Jul 23 2024
Equals phi^4. - Stefano Spezia, May 28 2025

A377752 Decimal expansion of the circumradius of a truncated icosahedron with unit edge length.

Original entry on oeis.org

2, 4, 7, 8, 0, 1, 8, 6, 5, 9, 0, 6, 7, 6, 1, 5, 5, 3, 7, 5, 6, 6, 4, 0, 7, 9, 1, 2, 2, 6, 6, 3, 0, 7, 8, 0, 6, 9, 3, 6, 4, 9, 4, 7, 3, 2, 9, 7, 5, 7, 9, 4, 3, 8, 5, 5, 4, 2, 9, 5, 8, 3, 8, 8, 5, 3, 1, 5, 9, 5, 7, 7, 1, 2, 0, 7, 4, 2, 1, 6, 7, 6, 1, 8, 4, 2, 6, 2, 2, 0
Offset: 1

Views

Author

Paolo Xausa, Nov 07 2024

Keywords

Examples

			2.47801865906761553756640791226630780693649473...
		

Crossrefs

Cf. A377750 (surface area), A377751 (volume), A205769 (midradius + 1), A377787 (Dehn invariant).
Cf. A019881 (analogous for a regular icosahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[58 + 18*Sqrt[5]]/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosahedron", "Circumradius"], 10, 100]]
  • PARI
    sqrt(58 + 18*sqrt(5))/4 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals sqrt(58 + 18*sqrt(5))/4 = sqrt(58 + 18*A002163)/4.
Showing 1-6 of 6 results.