cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A019827 Decimal expansion of sin(Pi/10) (angle of 18 degrees).

Original entry on oeis.org

3, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of cos(2*Pi/5) (angle of 72 degrees).
Also the imaginary part of i^(1/5). - Stanislav Sykora, Apr 25 2012
One of the two roots of 4x^2 + 2x - 1 (the other is the sine of 54 degrees times -1 = -A019863). - Alonso del Arte, Apr 25 2015
This is the height h of the isosceles triangle in a regular pentagon inscribed in a unit circle, formed by a diagonal as base and two adjacent radii. h = cos(2*Pi/5) = sin(Pi/10). - Wolfdieter Lang, Jan 08 2018
Quadratic number of denominator 2 and minimal polynomial 4x^2 + 2x - 1. - Charles R Greathouse IV, May 13 2019
Largest superstable width of the logistic map (see Finch). - Stefano Spezia, Nov 23 2024

Examples

			0.30901699437494742410229341718281905886015458990288143106772431135263...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.9 and 8.19, pp. 66, 535.

Crossrefs

Programs

Formula

Equals (sqrt(5) - 1)/4 = (phi - 1)/2 = 1/(2*phi), with phi from A001622.
Equals 1/(1 + sqrt(5)). - Omar E. Pol, Nov 15 2007
Equals 1/A134945. - R. J. Mathar, Jan 17 2021
Equals 2*A019818*A019890. - R. J. Mathar, Jan 17 2021
Equals Product_{k>=1} 1 - 1/(phi + phi^k), where phi is the golden ratio (A001622) (Ohtsuka, 2018). - Amiram Eldar, Dec 02 2021
Equals Product_{k>=1} (1 - 1/A055588(k)). - Amiram Eldar, Nov 28 2024
Equals A094214/2 = 1-A187798 = A341332/Pi = (A377697-2)/3. - Hugo Pfoertner, Nov 28 2024
This^2 + A019881^2 = 1. - R. J. Mathar, Aug 31 2025

A377694 Decimal expansion of the surface area of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

1, 0, 0, 9, 9, 0, 7, 6, 0, 1, 5, 3, 1, 0, 1, 9, 8, 8, 5, 4, 4, 7, 4, 5, 9, 4, 8, 9, 8, 8, 6, 3, 6, 6, 5, 6, 5, 5, 4, 9, 1, 5, 0, 9, 0, 5, 7, 5, 1, 8, 5, 6, 7, 5, 9, 5, 1, 4, 5, 3, 7, 2, 2, 4, 0, 8, 5, 0, 5, 5, 6, 3, 7, 3, 9, 3, 9, 6, 7, 2, 7, 7, 3, 9, 0, 4, 3, 5, 4, 2
Offset: 3

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			100.990760153101988544745948988636656554915090575...
		

Crossrefs

Cf. A377695 (volume), A377696 (circumradius), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A131595 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[5*(Sqrt[3] + 6*Sqrt[5 + Sqrt[20]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 5*(sqrt(3) + 6*sqrt(5 + 2*sqrt(5))) = 5*(A002194 + 6*sqrt(5 + A010476)).

A377695 Decimal expansion of the volume of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

8, 5, 0, 3, 9, 6, 6, 4, 5, 5, 9, 3, 7, 0, 8, 8, 1, 5, 5, 4, 6, 7, 9, 6, 5, 1, 0, 1, 2, 6, 5, 4, 1, 5, 9, 6, 1, 0, 7, 1, 2, 1, 0, 9, 5, 4, 2, 3, 9, 2, 3, 7, 8, 7, 6, 6, 9, 7, 1, 7, 3, 7, 7, 2, 2, 6, 2, 2, 7, 0, 1, 4, 6, 0, 4, 0, 7, 0, 1, 2, 6, 1, 3, 5, 3, 2, 2, 8, 2, 1
Offset: 2

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			85.039664559370881554679651012654159610712109542...
		

Crossrefs

Cf. A377694 (surface area), A377696 (circumradius), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A102769 (analogous for a regular dodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[5/12*(99 + 47*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Volume"], 10, 100]]

Formula

Equals (5/12)*(99 + 47*sqrt(5)) = (5/12)*(99 + 47*A002163).

A378976 Decimal expansion of the midradius of a triakis icosahedron with unit shorter edge length.

Original entry on oeis.org

1, 3, 9, 4, 4, 2, 7, 1, 9, 0, 9, 9, 9, 9, 1, 5, 8, 7, 8, 5, 6, 3, 6, 6, 9, 4, 6, 7, 4, 9, 2, 5, 1, 0, 4, 9, 4, 1, 7, 6, 2, 4, 7, 3, 4, 3, 8, 4, 4, 6, 1, 0, 2, 8, 9, 7, 0, 8, 3, 5, 8, 8, 9, 8, 1, 6, 4, 2, 0, 8, 3, 7, 0, 2, 5, 5, 1, 2, 1, 9, 5, 9, 7, 6, 5, 7, 6, 5, 7, 6
Offset: 1

Views

Author

Paolo Xausa, Dec 14 2024

Keywords

Comments

The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.

Examples

			1.3944271909999158785636694674925104941762473438446...
		

Crossrefs

Cf. A378973 (surface area), A378974 (volume), A378975 (inradius), A378977 (dihedral angle).
Cf. A377697 (midradius of a truncated dodecahedron with unit edge length).

Programs

  • Mathematica
    First[RealDigits[1/2 + 2/Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisIcosahedron", "Midradius"], 10, 100]]

Formula

Equals 1/2 + 2/sqrt(5) = 1/2 + 2/A002163.
Equals (A249600 + 13)/10 = (A010532 + 5)/10.

A385804 Decimal expansion of the volume of a triaugmented dodecahedron with unit edge.

Original entry on oeis.org

8, 5, 6, 7, 6, 2, 7, 4, 5, 7, 8, 1, 2, 1, 0, 5, 6, 8, 0, 7, 6, 7, 2, 0, 0, 6, 2, 8, 8, 7, 1, 1, 4, 2, 9, 4, 1, 4, 5, 1, 1, 5, 9, 4, 2, 4, 2, 7, 1, 6, 1, 0, 7, 3, 3, 0, 0, 7, 9, 3, 2, 3, 3, 5, 1, 4, 4, 7, 2, 6, 7, 3, 5, 5, 7, 0, 8, 8, 4, 1, 8, 6, 4, 0, 2, 0, 2, 7, 0, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The triaugmented dodecahedron is Johnson solid J_61.

Examples

			8.56762745781210568076720062887114294145115942427...
		

Crossrefs

Cf. A385805 (surface area).

Programs

  • Mathematica
    First[RealDigits[5/8*(7 + Sqrt[45]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J61", "Volume"], 10, 100]]

Formula

Equals (5/8)*(7 + 3*sqrt(5)) = (5/8)*(7 + A010499).
Equals A102769 + 3*A179552.
Equals the largest root of 16*x^2 - 140*x + 25.
Equals A377697^2. - Hugo Pfoertner, Jul 13 2025

A377696 Decimal expansion of the circumradius of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

2, 9, 6, 9, 4, 4, 9, 0, 1, 5, 8, 6, 3, 3, 9, 8, 4, 6, 7, 0, 4, 2, 1, 6, 6, 6, 9, 5, 6, 9, 2, 5, 9, 7, 9, 6, 3, 6, 0, 0, 7, 4, 7, 7, 0, 0, 3, 2, 8, 0, 9, 6, 6, 9, 9, 8, 3, 7, 8, 6, 2, 7, 7, 6, 1, 2, 2, 1, 0, 6, 9, 2, 4, 4, 8, 8, 8, 3, 7, 5, 2, 0, 9, 0, 7, 9, 6, 4, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			2.9694490158633984670421666956925979636007477003...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A179296 (analogous for a regular dodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[74 + 30*Sqrt[5]]/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(74 + 30*sqrt(5))/4 = sqrt(74 + 30*A002163)/4.
Showing 1-6 of 6 results.