cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A378973 Decimal expansion of the surface area of a triakis icosahedron with unit shorter edge length.

Original entry on oeis.org

2, 6, 2, 2, 8, 5, 9, 5, 9, 7, 6, 7, 4, 3, 7, 5, 1, 6, 8, 1, 4, 5, 8, 1, 9, 5, 1, 0, 4, 3, 5, 6, 8, 0, 1, 7, 3, 1, 8, 6, 5, 2, 6, 6, 6, 9, 9, 5, 1, 9, 3, 4, 2, 6, 0, 1, 6, 3, 9, 6, 2, 5, 7, 1, 7, 6, 8, 9, 9, 0, 4, 3, 5, 9, 5, 8, 6, 7, 6, 7, 7, 0, 9, 4, 7, 3, 8, 5, 1, 9
Offset: 2

Views

Author

Paolo Xausa, Dec 13 2024

Keywords

Comments

The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.

Examples

			26.228595976743751681458195104356801731865266699519...
		

Crossrefs

Cf. A378974 (volume), A378975 (inradius), A378976 (midradius), A378977 (dihedral angle).
Cf. A377694 (surface area of a truncated dodecahedron with unit edge length).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[3*Sqrt[(173 - 9*Sqrt[5])/2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisIcosahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 3*sqrt((173 - 9*sqrt(5))/2) = 3*sqrt((173 - 9*A002163)/2).

A377695 Decimal expansion of the volume of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

8, 5, 0, 3, 9, 6, 6, 4, 5, 5, 9, 3, 7, 0, 8, 8, 1, 5, 5, 4, 6, 7, 9, 6, 5, 1, 0, 1, 2, 6, 5, 4, 1, 5, 9, 6, 1, 0, 7, 1, 2, 1, 0, 9, 5, 4, 2, 3, 9, 2, 3, 7, 8, 7, 6, 6, 9, 7, 1, 7, 3, 7, 7, 2, 2, 6, 2, 2, 7, 0, 1, 4, 6, 0, 4, 0, 7, 0, 1, 2, 6, 1, 3, 5, 3, 2, 2, 8, 2, 1
Offset: 2

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			85.039664559370881554679651012654159610712109542...
		

Crossrefs

Cf. A377694 (surface area), A377696 (circumradius), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A102769 (analogous for a regular dodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[5/12*(99 + 47*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Volume"], 10, 100]]

Formula

Equals (5/12)*(99 + 47*sqrt(5)) = (5/12)*(99 + 47*A002163).

A377697 Decimal expansion of the midradius of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

2, 9, 2, 7, 0, 5, 0, 9, 8, 3, 1, 2, 4, 8, 4, 2, 2, 7, 2, 3, 0, 6, 8, 8, 0, 2, 5, 1, 5, 4, 8, 4, 5, 7, 1, 7, 6, 5, 8, 0, 4, 6, 3, 7, 6, 9, 7, 0, 8, 6, 4, 4, 2, 9, 3, 2, 0, 3, 1, 7, 2, 9, 3, 4, 0, 5, 7, 8, 9, 0, 6, 9, 4, 2, 2, 8, 3, 5, 3, 6, 7, 4, 5, 6, 0, 8, 1, 0, 8, 0
Offset: 1

Views

Author

Paolo Xausa, Nov 05 2024

Keywords

Examples

			2.9270509831248422723068802515484571765804637697...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume), A377696 (circumradius), A377698 (Dehn invariant, negated).
Cf. A239798 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[(5 + Sqrt[45])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Midradius"], 10, 100]]

Formula

Equals (5 + 3*sqrt(5))/4 = (5 + A010499)/4.
Equals A205769 - 1/2.

A386465 Decimal expansion of the surface area of an augmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 2, 1, 8, 2, 0, 9, 2, 2, 2, 0, 2, 1, 3, 9, 1, 8, 5, 7, 7, 9, 8, 8, 5, 4, 2, 4, 5, 2, 8, 1, 5, 3, 3, 2, 0, 5, 2, 9, 8, 4, 2, 1, 5, 9, 5, 3, 6, 1, 4, 3, 6, 8, 9, 9, 8, 1, 3, 2, 6, 8, 5, 2, 1, 3, 9, 0, 7, 1, 9, 0, 7, 8, 1, 5, 0, 3, 9, 6, 6, 7, 2, 0, 5, 9, 0, 9, 3, 2
Offset: 3

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The augmented truncated dodecahedron is Johnson solid J_68.

Examples

			102.18209222021391857798854245281533205298421595361...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(20 + 25*Sqrt[3] + 110*Sqrt[#] + Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J68", "SurfaceArea"], 10, 100]]

Formula

Equals (20 + 25*sqrt(3) + 110*sqrt(5 + 2*sqrt(5)) + sqrt(5*(5 + 2*sqrt(5))))/4 = (20 + 25*A002194 + 110*sqrt(5 + A010476) + sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 10240*x^7 - 3955200*x^6 + 122240000*x^5 + 16152924000*x^4 - 343551280000*x^3 - 11461251137500*x^2 + 131995515375000*x + 634637481578125.

A386543 Decimal expansion of the surface area of a parabiaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 3, 3, 7, 3, 4, 2, 4, 2, 8, 7, 3, 2, 5, 8, 4, 8, 6, 1, 1, 2, 3, 1, 1, 3, 5, 9, 1, 6, 9, 9, 4, 0, 0, 7, 5, 5, 1, 0, 5, 3, 3, 4, 1, 3, 3, 2, 0, 4, 3, 0, 6, 2, 0, 4, 4, 8, 1, 1, 6, 4, 8, 0, 1, 9, 3, 0, 8, 8, 1, 7, 8, 2, 3, 6, 1, 1, 2, 0, 5, 7, 0, 2, 1, 3, 8, 3, 2, 1
Offset: 3

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The parabiaugmented truncated dodecahedron is Johnson solid J_69.
Also the surface area of a metabiaugmented truncated dodecahedron (Johnson solid J_70) with unit edges.

Examples

			103.37342428732584861123113591699400755105334133204...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(20 + 15*Sqrt[3] + 50*Sqrt[#] + Sqrt[5*#])/2 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J69", "SurfaceArea"], 10, 100]]

Formula

Equals (20 + 15*sqrt(3) + 50*sqrt(5 + 2*sqrt(5)) + sqrt(5*(5 + 2*sqrt(5))))/2 = (20 + 15*A002194 + 50*sqrt(5 + A010476) + sqrt(5*(5 + A010476)))/2.
Equals the largest root of x^8 - 80*x^7 - 11400*x^6 + 796000*x^5 + 31475250*x^4 - 1804610000*x^3 - 8296459375*x^2 + 548931187500*x - 2544044046875.

A386545 Decimal expansion of the surface area of a triaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 4, 5, 6, 4, 7, 5, 6, 3, 5, 4, 4, 3, 7, 7, 7, 8, 6, 4, 4, 4, 7, 3, 7, 2, 9, 3, 8, 1, 1, 7, 2, 6, 8, 3, 0, 4, 9, 1, 2, 2, 4, 6, 6, 7, 1, 0, 4, 7, 1, 7, 5, 5, 0, 9, 1, 4, 9, 0, 6, 1, 0, 8, 2, 4, 7, 1, 0, 4, 4, 4, 8, 6, 5, 7, 1, 8, 4, 4, 4, 6, 8, 3, 6, 8, 5, 7, 1, 1
Offset: 3

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The triaugmented truncated dodecahedron is Johnson solid J_71.

Examples

			104.56475635443777864447372938117268304912246671047...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(60 + 35*Sqrt[3] + 90*Sqrt[#] + 3*Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J71", "SurfaceArea"], 10, 100]]

Formula

Equals (60 + 35*sqrt(3) + 90*sqrt(5 + 2*sqrt(5)) + 3*sqrt(5*(5 + 2*sqrt(5))))/4 = (60 + 35*A002194 + 90*sqrt(5 + A010476) + 3*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 30720*x^7 - 1574400*x^6 + 238464000*x^5 + 68364000*x^4 - 390828240000*x^3 + 4437895162500*x^2 + 78660973125000*x - 1021409416546875.

A377696 Decimal expansion of the circumradius of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

2, 9, 6, 9, 4, 4, 9, 0, 1, 5, 8, 6, 3, 3, 9, 8, 4, 6, 7, 0, 4, 2, 1, 6, 6, 6, 9, 5, 6, 9, 2, 5, 9, 7, 9, 6, 3, 6, 0, 0, 7, 4, 7, 7, 0, 0, 3, 2, 8, 0, 9, 6, 6, 9, 9, 8, 3, 7, 8, 6, 2, 7, 7, 6, 1, 2, 2, 1, 0, 6, 9, 2, 4, 4, 8, 8, 8, 3, 7, 5, 2, 0, 9, 0, 7, 9, 6, 4, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			2.9694490158633984670421666956925979636007477003...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A179296 (analogous for a regular dodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[74 + 30*Sqrt[5]]/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(74 + 30*sqrt(5))/4 = sqrt(74 + 30*A002163)/4.

A381692 Decimal expansion of the isoperimetric quotient of a truncated dodecahedron.

Original entry on oeis.org

7, 9, 4, 0, 5, 4, 8, 9, 4, 3, 0, 3, 7, 9, 7, 9, 8, 1, 3, 0, 1, 8, 4, 2, 8, 2, 7, 2, 8, 2, 2, 5, 8, 1, 8, 0, 8, 2, 7, 1, 1, 9, 2, 9, 9, 3, 7, 8, 5, 4, 5, 2, 0, 2, 4, 7, 9, 4, 1, 6, 1, 2, 4, 2, 0, 8, 2, 9, 6, 3, 7, 3, 3, 7, 5, 7, 5, 7, 1, 4, 0, 1, 8, 6, 6, 5, 1, 4, 5, 6
Offset: 0

Views

Author

Paolo Xausa, Mar 07 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.7940548943037979813018428272822581808271192993785...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume).

Programs

  • Mathematica
    First[RealDigits[Pi/20*(99 + 47*Sqrt[5])^2/(Sqrt[3] + 6*Sqrt[5 + Sqrt[20]])^3, 10, 100]]

Formula

Equals 36*Pi*A377695^2/(A377694^3).
Equals (Pi/20)*(99 + 47*sqrt(5))^2/((sqrt(3) + 6*sqrt(5 + 2*sqrt(5)))^3) = (A000796/20)*(99 + 47*A002163)^2/((A002194 + 6*sqrt(5 + A010476))^3).
Showing 1-8 of 8 results.