cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A378974 Decimal expansion of the volume of a triakis icosahedron with unit shorter edge length.

Original entry on oeis.org

1, 2, 0, 1, 7, 2, 2, 0, 9, 2, 6, 8, 7, 4, 3, 1, 6, 5, 1, 3, 3, 2, 9, 8, 1, 4, 4, 2, 3, 3, 7, 6, 6, 4, 7, 7, 6, 5, 1, 8, 2, 0, 0, 9, 6, 6, 8, 7, 3, 7, 4, 5, 8, 6, 0, 3, 8, 8, 0, 4, 1, 6, 0, 4, 7, 5, 8, 4, 1, 9, 3, 0, 0, 8, 3, 2, 2, 8, 6, 5, 9, 2, 3, 0, 9, 6, 8, 4, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Dec 14 2024

Keywords

Comments

The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.

Examples

			12.017220926874316513329814423376647765182009668737...
		

Crossrefs

Cf. A378973 (surface area), A378975 (inradius), A378976 (midradius), A378977 (dihedral angle).
Cf. A377695 (volume of a truncated dodecahedron with unit edge length).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[(19 + 13*Sqrt[5])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisIcosahedron", "Volume"], 10, 100]]

Formula

Equals (19 + 13*sqrt(5))/4 = (19 + 13*A002163)/4.

A377694 Decimal expansion of the surface area of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

1, 0, 0, 9, 9, 0, 7, 6, 0, 1, 5, 3, 1, 0, 1, 9, 8, 8, 5, 4, 4, 7, 4, 5, 9, 4, 8, 9, 8, 8, 6, 3, 6, 6, 5, 6, 5, 5, 4, 9, 1, 5, 0, 9, 0, 5, 7, 5, 1, 8, 5, 6, 7, 5, 9, 5, 1, 4, 5, 3, 7, 2, 2, 4, 0, 8, 5, 0, 5, 5, 6, 3, 7, 3, 9, 3, 9, 6, 7, 2, 7, 7, 3, 9, 0, 4, 3, 5, 4, 2
Offset: 3

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			100.990760153101988544745948988636656554915090575...
		

Crossrefs

Cf. A377695 (volume), A377696 (circumradius), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A131595 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[5*(Sqrt[3] + 6*Sqrt[5 + Sqrt[20]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 5*(sqrt(3) + 6*sqrt(5 + 2*sqrt(5))) = 5*(A002194 + 6*sqrt(5 + A010476)).

A377697 Decimal expansion of the midradius of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

2, 9, 2, 7, 0, 5, 0, 9, 8, 3, 1, 2, 4, 8, 4, 2, 2, 7, 2, 3, 0, 6, 8, 8, 0, 2, 5, 1, 5, 4, 8, 4, 5, 7, 1, 7, 6, 5, 8, 0, 4, 6, 3, 7, 6, 9, 7, 0, 8, 6, 4, 4, 2, 9, 3, 2, 0, 3, 1, 7, 2, 9, 3, 4, 0, 5, 7, 8, 9, 0, 6, 9, 4, 2, 2, 8, 3, 5, 3, 6, 7, 4, 5, 6, 0, 8, 1, 0, 8, 0
Offset: 1

Views

Author

Paolo Xausa, Nov 05 2024

Keywords

Examples

			2.9270509831248422723068802515484571765804637697...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume), A377696 (circumradius), A377698 (Dehn invariant, negated).
Cf. A239798 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[(5 + Sqrt[45])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Midradius"], 10, 100]]

Formula

Equals (5 + 3*sqrt(5))/4 = (5 + A010499)/4.
Equals A205769 - 1/2.

A386464 Decimal expansion of the volume of an augmented truncated dodecahedron with unit edges.

Original entry on oeis.org

8, 7, 3, 6, 3, 7, 0, 9, 8, 7, 7, 7, 0, 4, 0, 7, 4, 6, 8, 5, 6, 1, 9, 1, 0, 0, 1, 2, 5, 1, 4, 1, 6, 7, 7, 1, 0, 1, 0, 0, 5, 8, 5, 5, 1, 1, 5, 4, 6, 6, 7, 2, 9, 2, 4, 9, 8, 1, 9, 0, 0, 2, 5, 5, 2, 8, 9, 6, 3, 8, 2, 0, 7, 7, 4, 9, 8, 8, 8, 2, 5, 4, 6, 4, 7, 5, 2, 2, 5, 1
Offset: 2

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The augmented truncated dodecahedron is Johnson solid J_68.

Examples

			87.3637098777040746856191001251416771010058551...
		

Crossrefs

Cf. A386465 (surface area).

Programs

  • Mathematica
    First[RealDigits[505/12 + 81/4*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J68", "Volume"], 10, 100]]

Formula

Equals 505/12 + 81*sqrt(5)/4 = 505/12 + 81*A204188.
Equals A377695 + A179590.
Equals the largest root of 36*x^2 - 3030*x - 10055.

A386466 Decimal expansion of the volume of a parabiaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

8, 9, 6, 8, 7, 7, 5, 5, 1, 9, 6, 0, 3, 7, 2, 6, 7, 8, 1, 6, 5, 5, 8, 5, 4, 9, 2, 3, 7, 6, 2, 9, 1, 9, 4, 5, 9, 1, 2, 9, 9, 6, 0, 0, 6, 8, 8, 5, 4, 1, 0, 7, 9, 7, 3, 2, 6, 6, 6, 2, 6, 7, 3, 8, 3, 1, 7, 0, 0, 6, 2, 6, 9, 4, 5, 9, 0, 7, 5, 2, 4, 7, 9, 4, 1, 8, 1, 6, 8, 0
Offset: 2

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The parabiaugmented truncated dodecahedron is Johnson solid J_69.
Also the volume of a metabiaugmented truncated dodecahedron (Johnson solid J_70) with unit edges.

Examples

			89.68775519603726781655854923762919459129960068854...
		

Crossrefs

Cf. A386543 (surface area).

Programs

  • Mathematica
    First[RealDigits[(515 + 251*Sqrt[5])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J69", "Volume"], 10, 100]]

Formula

Equals (515 + 251*sqrt(5))/12 = (515 + 251*A002163)/12.
Equals A377695 + 2*A179590.
Equals the largest root of 36*x^2 - 3090*x - 12445.

A386544 Decimal expansion of the volume of a triaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

9, 2, 0, 1, 1, 8, 0, 0, 5, 1, 4, 3, 7, 0, 4, 6, 0, 9, 4, 7, 4, 9, 7, 9, 9, 8, 3, 5, 0, 1, 1, 6, 7, 1, 2, 0, 8, 1, 5, 9, 3, 3, 4, 6, 2, 6, 1, 6, 1, 5, 4, 3, 0, 2, 1, 5, 5, 1, 3, 5, 3, 2, 2, 1, 3, 4, 4, 3, 7, 4, 3, 3, 1, 1, 6, 8, 2, 6, 2, 2, 4, 1, 2, 3, 6, 1, 1, 1, 0, 9
Offset: 2

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The triaugmented truncated dodecahedron is Johnson solid J_71.

Examples

			92.01180051437046094749799835011671208159334626...
		

Crossrefs

Cf. A386545 (surface area).

Programs

  • Mathematica
    First[RealDigits[7/12*(75 + 37*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J71", "Volume"], 10, 100]]

Formula

Equals (7/12)*(75 + 37*sqrt(5)) = (7/12)*(75 + 37*A002163).
Equals A377695 + 3*A179590.
Equals the largest root of 36*x^2 - 3150*x - 14945.

A377696 Decimal expansion of the circumradius of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

2, 9, 6, 9, 4, 4, 9, 0, 1, 5, 8, 6, 3, 3, 9, 8, 4, 6, 7, 0, 4, 2, 1, 6, 6, 6, 9, 5, 6, 9, 2, 5, 9, 7, 9, 6, 3, 6, 0, 0, 7, 4, 7, 7, 0, 0, 3, 2, 8, 0, 9, 6, 6, 9, 9, 8, 3, 7, 8, 6, 2, 7, 7, 6, 1, 2, 2, 1, 0, 6, 9, 2, 4, 4, 8, 8, 8, 3, 7, 5, 2, 0, 9, 0, 7, 9, 6, 4, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			2.9694490158633984670421666956925979636007477003...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A179296 (analogous for a regular dodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[74 + 30*Sqrt[5]]/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(74 + 30*sqrt(5))/4 = sqrt(74 + 30*A002163)/4.

A381692 Decimal expansion of the isoperimetric quotient of a truncated dodecahedron.

Original entry on oeis.org

7, 9, 4, 0, 5, 4, 8, 9, 4, 3, 0, 3, 7, 9, 7, 9, 8, 1, 3, 0, 1, 8, 4, 2, 8, 2, 7, 2, 8, 2, 2, 5, 8, 1, 8, 0, 8, 2, 7, 1, 1, 9, 2, 9, 9, 3, 7, 8, 5, 4, 5, 2, 0, 2, 4, 7, 9, 4, 1, 6, 1, 2, 4, 2, 0, 8, 2, 9, 6, 3, 7, 3, 3, 7, 5, 7, 5, 7, 1, 4, 0, 1, 8, 6, 6, 5, 1, 4, 5, 6
Offset: 0

Views

Author

Paolo Xausa, Mar 07 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.7940548943037979813018428272822581808271192993785...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume).

Programs

  • Mathematica
    First[RealDigits[Pi/20*(99 + 47*Sqrt[5])^2/(Sqrt[3] + 6*Sqrt[5 + Sqrt[20]])^3, 10, 100]]

Formula

Equals 36*Pi*A377695^2/(A377694^3).
Equals (Pi/20)*(99 + 47*sqrt(5))^2/((sqrt(3) + 6*sqrt(5 + 2*sqrt(5)))^3) = (A000796/20)*(99 + 47*A002163)^2/((A002194 + 6*sqrt(5 + A010476))^3).
Showing 1-8 of 8 results.