cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344308 Numbers k such that A205791(k) = k+1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 23, 26, 29, 30, 34, 35, 37, 38, 39, 42, 43, 46, 47, 51, 53, 57, 58, 59, 65, 67, 69, 70, 73, 74, 78, 79, 83, 85, 86, 87, 89, 91, 94, 95, 97, 102, 103, 105, 106, 107, 109, 111, 113, 114, 115, 118, 119, 127, 129, 130, 133, 134, 137, 138, 139, 141, 145
Offset: 1

Views

Author

Robert Israel, May 14 2021

Keywords

Examples

			a(6) = 7 is a term because A205791(7) = 8.
		

Crossrefs

Cf. A205791.
Subset of A005117.

Programs

  • Maple
    N:= 200: # for terms <= N
    V:= Vector(N):
    count:= 0:
    for k from 1 while count < N do
      for j from 1 to k-1 while count < N do
        Q:= select(t -> t <= N and V[t] = 0, numtheory:-divisors(k^5-j^5));
        if Q <> {} then
           newcount:= nops(Q);
           count:= count + newcount;
           V[convert(Q, list)]:= k;
        fi
    od od:
    select(t -> V[t] = t+1, [$1..N]);
  • Mathematica
    Select[Range@200,(k=1;While[FreeQ[Mod[Table[k^5-j^5,{j,k-1}],#],0],k++];k)==#+1&] (* Giorgos Kalogeropoulos, May 14 2021 *)

A205792 Least positive integer j such that n divides k^5-j^5, where k, as in A205791, is the least number for which there is such a j.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 2, 7, 1, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 1, 3, 6, 1, 1, 1, 2, 5, 1, 1, 2, 3, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 7, 3
Offset: 1

Views

Author

Clark Kimberling, Feb 01 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			1 divides 2^5-1^5 -> k=2, j=1
2 divides 3^5-1^5 -> k=3, j=1
3 divides 4^5-1^5 -> k=4, j=1
4 divides 4^5-2^5 -> k=4, j=2
5 divides 6^5-1^5 -> k=6, j=1
6 divides 7^5-1^5 -> k=7, j=1
		

Crossrefs

Cf. A204892.

Programs

  • Mathematica
    s = Table[n^4, {n, 1, 120}] ;
    lk = Table[
      NestWhile[# + 1 &, 1,
       Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1,
        Length[s]}]
    Table[NestWhile[# + 1 &, 1,
      Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)
Showing 1-2 of 2 results.