A205857
Numbers k for which 6 divides s(k)-s(j) for some j
5, 6, 7, 9, 9, 10, 12, 12, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 27, 27, 27, 27, 28, 28, 28, 28
Offset: 1
Keywords
Examples
The first six terms match these differences: s(5)-s(2) = 8-2 = 6 = 6*1 s(6)-s(1) = 13-1 = 12 = 6*2 s(7)-s(3) = 21-3 = 18 = 6*3 s(9)-s(1) = 55-1 = 54 = 6*9 s(9)-s(6) = 55-13 = 42 = 6*7 s(10)-s(4) = 89-5 = 84 =6*14
Programs
-
Mathematica
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 6; t = d[c] (* A205856 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205857 *) Table[j[n], {n, 1, z2}] (* A205858 *) Table[s[k[n]]-s[j[n]], {n, 1, z2}] (* A205859 *) Table[(s[k[n]]-s[j[n]])/c, {n,1,z2}] (* A205860 *)
Comments