A205865 [s(k)-s(j)]/7, where the pairs (k,j) are given by A205862 and A205863, and s(k) denotes the (k+1)-st Fibonacci number.
1, 3, 6, 3, 12, 33, 52, 49, 46, 87, 86, 138, 228, 227, 141, 369, 368, 282, 141, 597, 564, 966, 1563, 1551, 2530, 2529, 2443, 2302, 2161, 4092, 4089, 4086, 4040, 6621, 6483, 10716, 10713, 10710, 10664, 6624, 17340, 17337, 17334, 17288, 13248
Offset: 1
Keywords
Examples
The first six terms match these differences: s(5)-s(1) = 8-1 = 7 = 7*1 s(8)-s(6) = 34-13 = 21 = 7*3 s(9)-s(6) = 55-13 = 42 = 7*6 s(9)-s(8) = 55-34 = 21 = 7*3 s(10)-s(4) = 89-5 = 84 = 7*12 s(13)-s(6) = 377-13 = 364 =7*52
Programs
-
Mathematica
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 7; t = d[c] (* A205861 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205862 *) Table[j[n], {n, 1, z2}] (* A205863 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205864 *) Table[(s[k[n]]-s[j[n]])/c, {n,1,z2}] (* A205865 *)
Comments