cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205947 Carmichael numbers not congruent to 1 modulo 6.

Original entry on oeis.org

561, 2465, 62745, 162401, 656601, 1909001, 5444489, 11921001, 19384289, 26719701, 45318561, 84350561, 151530401, 174352641, 221884001, 230996949, 275283401, 434932961, 662086041, 684106401, 689880801, 710382401
Offset: 1

Views

Author

Keywords

Comments

These numbers are very sparse; most Carmichael numbers are 1 mod 6. - Charles R Greathouse IV, May 02 2012
Not known to be infinite, see Matomäki. - Charles R Greathouse IV, Jun 13 2012
From Robert Israel, Jul 20 2015: (Start)
Now known to be infinite, see Wright.
No member of this sequence is divisible by any prime of the form 6k+1, hence all prime factors for this sequence are members of A045410. (End)

Crossrefs

Programs

  • Maple
    korselt:= proc(n) uses numtheory; local p;
      if isprime(n) or not issqrfree(n) then return false fi;
      for p in factorset(n) do
         if n-1 mod (p-1) <> 0 then return false fi
      od;
      true
    end proc:
    select(korselt, [seq(seq(6*i+j,j=[3,5]),i=1..10^5)]); # Robert Israel, Jul 20 2015
  • Mathematica
    Select[Range[100000], !PrimeQ[#] && IntegerQ[(#-1)/CarmichaelLambda[#]] && !Mod[#,6]==1&]
  • PARI
    Korselt(n,f=factor(n))=for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    list(lim)={
      my(v=List(),p=2);
      forstep(n=561,lim,[12,6],
        if(Korselt(n),listput(v,n))
      );
      forprime(q=3,lim,
        forstep(n=p+if(p%6<5,4,6),q-2,6,
          if(Korselt(n),listput(v,n))
        );
        p=q
      );
      vecsort(Vec(v))
    }; \\ Charles R Greathouse IV, Apr 25 2012

Formula

Wright shows that there are at least x^(K/(log log log x)^2) terms up to x, for an explicitly computable (though not computed) constant K. - Charles R Greathouse IV, Jul 20 2015