A205947 Carmichael numbers not congruent to 1 modulo 6.
561, 2465, 62745, 162401, 656601, 1909001, 5444489, 11921001, 19384289, 26719701, 45318561, 84350561, 151530401, 174352641, 221884001, 230996949, 275283401, 434932961, 662086041, 684106401, 689880801, 710382401
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Kaisa Matomäki, Carmichael numbers in arithmetic progressions, Journal of the Australian Mathematical Society 94:2 (2013), pp. 268-275.
- T. Wright, Infinitely many Carmichael numbers in arithmetic progressions, Bull. London Math. Soc. (2013) 45 (5): 943-952. arXiv:1212.5850
Programs
-
Maple
korselt:= proc(n) uses numtheory; local p; if isprime(n) or not issqrfree(n) then return false fi; for p in factorset(n) do if n-1 mod (p-1) <> 0 then return false fi od; true end proc: select(korselt, [seq(seq(6*i+j,j=[3,5]),i=1..10^5)]); # Robert Israel, Jul 20 2015
-
Mathematica
Select[Range[100000], !PrimeQ[#] && IntegerQ[(#-1)/CarmichaelLambda[#]] && !Mod[#,6]==1&]
-
PARI
Korselt(n,f=factor(n))=for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1 list(lim)={ my(v=List(),p=2); forstep(n=561,lim,[12,6], if(Korselt(n),listput(v,n)) ); forprime(q=3,lim, forstep(n=p+if(p%6<5,4,6),q-2,6, if(Korselt(n),listput(v,n)) ); p=q ); vecsort(Vec(v)) }; \\ Charles R Greathouse IV, Apr 25 2012
Formula
Wright shows that there are at least x^(K/(log log log x)^2) terms up to x, for an explicitly computable (though not computed) constant K. - Charles R Greathouse IV, Jul 20 2015
Comments