A205976 a(n) = Fibonacci(n)*A028594(n) for n>=1, with a(0)=1, where A028594 lists the coefficients in (theta_3(x)*theta_3(7*x)+theta_2(x)*theta_2(7*x))^2.
1, 4, 12, 32, 84, 120, 384, 52, 1260, 1768, 3960, 4272, 16128, 13048, 4524, 58560, 122388, 114984, 403104, 334480, 1136520, 175136, 2550384, 2751072, 11128320, 9303100, 20394024, 31426880, 8898708, 61707480, 239627520, 172322432, 548933868, 676718976, 1231823592
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 4*x + 12*x^2 + 32*x^3 + 84*x^4 + 120*x^5 + 384*x^6 + 52*x^7 +... where A(x) = 1 + 1*4*x + 1*12*x^2 + 2*16*x^3 + 3*28*x^4 + 5*24*x^5 + 8*48*x^6 + 13*4*x^7 + 21*60*x^8 + 34*52*x^9 +...+ Fibonacci(n)*A028594(n)*x^n +... The g.f. is also given by the identity: A(x) = 1 + 4*( 1*1*x/(1-x-x^2) + 1*2*x^2/(1-3*x^2+x^4) + 2*3*x^3/(1-4*x^3-x^6) + 3*4*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1-11*x^5-x^10) + 8*6*x^6/(1-18*x^6+x^12) + 0*13*7*x^7/(1+29*x^7-x^14) +...). The values of the Dirichlet character Chi(n,7) repeat [1,1,1,1,1,1,0, ...].
Programs
-
PARI
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)} {a(n)=polcoeff(1 + 4*sum(m=1,n,fibonacci(m)*kronecker(m,7)^2*m*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)} for(n=0,60,print1(a(n),", "))
Formula
G.f.: 1 + 4*Sum_{n>=1} Fibonacci(n)*Chi(n,7)*n*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).
Comments