A206041 Values of the difference d for 7 primes in arithmetic progression with the minimal start sequence {7 + j*d}, j = 0 to 6.
150, 2760, 3450, 9150, 14190, 20040, 21240, 63600, 76710, 117420, 122340, 134250, 184470, 184620, 189690, 237060, 274830, 312000, 337530, 379410, 477630, 498900, 514740, 678750, 707850, 1014540, 1168530, 1180080, 1234530, 1251690, 1263480, 1523520, 1690590
Offset: 1
Keywords
Examples
d = 150 then {7, 7 + 1*150, 7 + 2*150, 7 + 3*150, 7 + 4*150, 7 + 5*150, + 7 + 6*150} = {7, 157, 307, 457, 607, 757, 907} which is 7 primes in arithmetic progression.
Links
- Sameen Ahmed Khan, Table of n, a(n) for n = 1..10000.
- Diophante, A1880. NP en PA (prime numbers in arithmetic progression) (in French).
- Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv preprint arXiv:1203.2083 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 15 2012
- Wikipedia, Primes in arithmetic progression.
- Index entries for sequences related to primes in arithmetic progressions.
Crossrefs
Programs
-
Maple
filter := d -> isprime(7+d) and isprime(7+2*d) and isprime(7+3*d) and isprime(7+4*d) and isprime(7+5*d) and isprime(7+6*d): select(filter, [$(1 .. 1700000)]); # Bernard Schott, Feb 13 2023
-
Mathematica
a = 7; t = {}; Do[If[PrimeQ[{a, a + d, a + 2*d, a + 3*d, a + 4*d, a + 5*d, a + 6*d}] == {True, True, True, True, True, True, True}, AppendTo[t,d]], {d, 200000}]; t
Formula
m is a term iff A123556(m) = 7. - Bernard Schott, Feb 12 2023
Comments