A206141 G.f.: Sum_{n>=0} x^n/Product_{k=1..n} (1 - A002203(k)*x^k + (-1)^k*x^(2*k)), where A002203 is the companion Pell numbers.
1, 1, 3, 8, 26, 67, 216, 555, 1704, 4538, 13320, 35376, 103863, 273792, 783694, 2101835, 5905044, 15745360, 44132278, 117267422, 325136638, 868034994, 2379074541, 6337238658, 17347580484, 46039358056, 125056019725, 332678989816, 898361151760, 2382959919616
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 26*x^4 + 67*x^5 + 216*x^6 + 555*x^7 +... where A(x) = 1 + x/(1-2*x-x^2) + x^2/((1-2*x-x^2)*(1-6*x^2+x^4)) + x^3/((1-2*x-x^2)*(1-6*x^2+x^4)*(1-14*x^3-x^6)) + x^4/((1-2*x-x^2)*(1-6*x^2+x^4)*(1-14*x^3-x^6)*(1-34*x^4+x^8)) + x^5/((1-2*x-x^2)*(1-6*x^2+x^4)*(1-14*x^3-x^6)*(1-34*x^4+x^8)*(1-82*x^5-x^10)) +... The companion Pell numbers begin: A002203 = [2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...].
Comments