A206152 a(n) = Sum_{k=0..n} binomial(n,k)^(n+k).
1, 2, 10, 326, 64066, 111968752, 1091576358244, 106664423412770932, 67305628532703785062402, 329378455047908259704557301276, 15577435010841058543979449475481629020, 4149966977623235242137197627437116176363522092
Offset: 0
Keywords
Examples
L.g.f.: L(x) = 2*x + 10*x^2/2 + 326*x^3/3 + 64066*x^4/4 + 111968752*x^5/5 +... where exponentiation yields A206151: exp(L(x)) = 1 + 2*x + 7*x^2 + 120*x^3 + 16257*x^4 + 22426576*x^5 +... Illustration of initial terms: a(1) = 1^1 + 1^2 = 2; a(2) = 1^2 + 2^3 + 1^4 = 10; a(3) = 1^3 + 3^4 + 3^5 + 1^6 = 326; a(4) = 1^4 + 4^5 + 6^6 + 4^7 + 1^8 = 64066; ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..47
Programs
-
Mathematica
Table[Sum[Binomial[n,k]^(n+k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
-
PARI
{a(n)=sum(k=0,n,binomial(n,k)^(n+k))}
Formula
Limit n->infinity a(n)^(1/n^2) = r^(-(1+r)^2/(2*r)) = 2.93544172048274005711865243..., where r = 0.6032326837741362... (see A237421) is the root of the equation (1-r)^(2*r) = r^(2*r+1). - Vaclav Kotesovec, Mar 03 2014
Comments