cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206155 G.f.: exp( Sum_{n>=1} A206156(n)*x^n/n ), where A206156(n) = Sum_{k=0..n} binomial(n,k)^(2*k).

Original entry on oeis.org

1, 2, 5, 38, 1425, 283002, 448468978, 2707673843860, 67018498701021670, 14506787732148113566364, 13603174532364904984495776225, 43960529641219941452921634596223366, 1207327102995668834632770987833295579308107, 188859837731175560954429490131760211759694331013582
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Logarithmic derivative yields A206156.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 38*x^3 + 1425*x^4 + 283002*x^5 +...
where the logarithm of the g.f. begins:
log(A(x)) = 2*x + 6*x^2/2 + 92*x^3/3 + 5410*x^4/4 + 1400652*x^5/5 + 2687407464*x^6/6 +...+ A206156(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^(2*k-0))+x*O(x^n))),n)}
    for(n=0,16,print1(a(n),", "))