A206156 a(n) = Sum_{k=0..n} binomial(n,k)^(2*k).
1, 2, 6, 92, 5410, 1400652, 2687407464, 18947436116184, 536104663173431874, 130559883231879141946580, 136031455187223511721647272376, 483565526783420050082035900177878504, 14487924180895151383693101563813954330590756
Offset: 0
Keywords
Examples
L.g.f.: L(x) = 2*x + 6*x^2/2 + 92*x^3/3 + 5410*x^4/4 + 1400652*x^5/5 +... where exponentiation yields A206155: exp(L(x)) = 1 + 2*x + 5*x^2 + 38*x^3 + 1425*x^4 + 283002*x^5 + 448468978*x^6 +... Illustration of initial terms: a(1) = 1^0 + 1^2 = 2; a(2) = 1^0 + 2^2 + 1^4 = 6; a(3) = 1^0 + 3^2 + 3^4 + 1^6 = 92; a(4) = 1^0 + 4^2 + 6^4 + 4^6 + 1^8 = 5410; a(5) = 1^0 + 5^2 + 10^4 + 10^6 + 5^8 + 1^10 = 1400652; ...
Programs
-
Mathematica
Table[Sum[Binomial[n,k]^(2*k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
-
PARI
{a(n)=sum(k=0,n,binomial(n,k)^(2*k))} for(n=0,16,print1(a(n),", "))
Formula
Limit n->infinity a(n)^(1/n^2) = r^(2*r^2/(1-2*r)) = 2.3520150420944489879258119..., where r = 0.70350607643066243... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Mar 03 2014
Comments