cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206238 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X3 or 3X2 subblock having exactly two equal edges, and new values 0..3 introduced in row major order.

Original entry on oeis.org

15, 60, 60, 310, 256, 310, 1640, 1136, 1136, 1640, 8910, 5728, 4456, 5728, 8910, 51066, 31652, 27168, 27168, 31652, 51066, 294546, 170728, 133392, 283728, 133392, 170728, 294546, 1710184, 943584, 607008, 1236432, 1236432, 607008, 943584, 1710184
Offset: 1

Views

Author

R. H. Hardin Feb 05 2012

Keywords

Comments

Table starts
......15......60......310......1640........8910........51066........294546
......60.....256.....1136......5728.......31652.......170728........943584
.....310....1136.....4456.....27168......133392.......607008.......3503136
....1640....5728....27168....283728.....1236432......9042600......95322432
....8910...31652...133392...1236432....10915392....118573968....1122086640
...51066..170728...607008...9042600...118573968...1448239080...22535636736
..294546..943584..3503136..95322432..1122086640..22535636736..649065145152
.1710184.5175034.17206032.419146392.10022726928.303011941944.8026428934128

Examples

			Some solutions for n=4 k=3
..0..0..1..0....0..0..1..1....0..0..1..1....0..1..2..0....0..0..1..1
..0..1..0..0....0..2..3..3....2..2..3..1....3..2..2..0....2..2..0..1
..2..0..0..1....2..3..3..2....1..2..2..3....2..2..1..2....3..2..2..3
..0..0..2..3....3..3..0..3....0..1..2..2....2..1..2..2....2..1..2..2
..0..1..3..3....0..0..3..3....0..0..3..2....3..2..2..3....2..2..0..2
		

Formula

Empirical for column k:
k=1: a(n) = 8*a(n-1) -11*a(n-2) +36*a(n-3) -303*a(n-4) +232*a(n-5) +147*a(n-6) +756*a(n-7) for n>8
k=2: a(n) = 3*a(n-1) +20*a(n-2) -14*a(n-3) -133*a(n-4) +95*a(n-5) +123*a(n-6) +9*a(n-7) -102*a(n-8) for n>10
k=3: a(n) = a(n-1) +129*a(n-3) -129*a(n-4) for n>7
k=4: a(n) = a(n-1) +339*a(n-3) -339*a(n-4) for n>8
k=5: a(n) = a(n-1) +921*a(n-3) -921*a(n-4) for n>9
k=6: a(n) = a(n-1) +2571*a(n-3) -2571*a(n-4) for n>10
k=7: a(n) = a(n-1) +7329*a(n-3) -7329*a(n-4) for n>11
k=8: a(n) = a(n-1) +21219*a(n-3) -21219*a(n-4) for n>12
k=9: a(n) = a(n-1) +62121*a(n-3) -62121*a(n-4) for n>13
k=10: a(n) = a(n-1) +183291*a(n-3) -183291*a(n-4) for n>14
k=11: a(n) = a(n-1) +543729*a(n-3) -543729*a(n-4) for n>15
apparently a(n) = a(n-1) +3*A085279(k+1)*a(n-3) -3*A085279(k+1)*a(n-4) for k>2 and n>k+4