A206284 Numbers that match irreducible polynomials over the nonnegative integers.
3, 6, 9, 10, 12, 18, 20, 22, 24, 27, 28, 30, 36, 40, 42, 44, 46, 48, 50, 52, 54, 56, 60, 66, 68, 70, 72, 76, 80, 81, 88, 92, 96, 98, 100, 102, 104, 108, 112, 114, 116, 118, 120, 124, 126, 130, 132, 136, 140, 144, 148, 150, 152, 154, 160, 162, 164, 168, 170
Offset: 1
Keywords
Examples
Polynomials having nonnegative integer coefficients are matched to the positive integers as follows: m p(m,x) irreducible --------------------------- 1 0 no 2 1 no 3 x yes 4 2 no 5 x^2 no 6 1+x yes 7 x^3 no 8 3 no 9 2x yes 10 1+x^2 yes
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10566
Crossrefs
Programs
-
Maple
P:= n -> add(f[2]*x^(numtheory:-pi(f[1])-1), f = ifactors(n)[2]): select(irreduc @ P, [$1..200]); # Robert Israel, Oct 09 2016
-
Mathematica
b[n_] := Table[x^k, {k, 0, n}]; f[n_] := f[n] = FactorInteger[n]; z = 400; t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]] == Prime[k], f[n][[m, 2]], 0]; u = Table[Apply[Plus, Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1, Length[f[n]]}]], {n, 1, z}]; p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]] Table[p[n, x], {n, 1, z/4}] v = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]], AppendTo[v, n]], {n, z/2}]; v (* A206284 *) Complement[Range[200], v] (* A206285 *)
-
PARI
is(n)=my(f=factor(n));polisirreducible(sum(i=1, #f[,1], f[i,2]*'x^primepi(f[i,1]-1))) \\ Charles R Greathouse IV, Feb 12 2012
Extensions
Introductory comments edited by Antti Karttunen, Oct 09 2016 and Peter Munn, Aug 13 2022
Comments