cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A206290 G.f.: Sum_{n>=0} Product_{k=1..n} Series_Reversion( x/(1 + x^k) ).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 17, 29, 44, 77, 114, 218, 330, 617, 987, 1913, 2968, 6068, 9500, 19263, 31399, 64268, 101702, 218891, 348559, 735823, 1205239, 2576727, 4119884, 9100854, 14588992, 31841260, 52163378, 114485092, 183947681, 414704366, 667453931, 1487920000
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Compare to the g.f. of partition numbers (A000041): Sum_{n>=0} Product_{k=1..n} x/(1 - x^k).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 12*x^6 + 17*x^7 +...
such that, by definition,
A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...
where G_n( x/(1 + x^n) ) = x.
The first few expansions of G_n(x) begin:
G_1(x) = x + x^2 + x^3 + x^4 + x^5 + x^6 +...+ x^(n+1) +...
G_2(x) = x + x^3 + 2*x^5 + 5*x^7 + 14*x^9 +...+ A000108(n)*x^(2*n+1) +...
G_3(x) = x + x^4 + 3*x^7 + 12*x^10 + 55*x^13 +...+ A001764(n)*x^(3*n+1) +...
G_4(x) = x + x^5 + 4*x^9 + 22*x^13 + 140*x^17 +...+ A002293(n)*x^(4*n+1) +...
G_5(x) = x + x^6 + 5*x^11 + 35*x^16 + 285*x^21 +...+ A002294(n)*x^(5*n+1) +...
G_6(x) = x + x^7 + 6*x^13 + 51*x^19 + 506*x^25 +...+ A002295(n)*x^(6*n+1) +...
G_7(x) = x + x^8 + 7*x^15 + 70*x^22 + 819*x^29 +...+ A002296(n)*x^(7*n+1) +...
Note that G_n(x) = x + x*G_n(x)^n.
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,prod(k=1,m,serreverse(x/(1+x^k+x*O(x^n))))),n)}
    for(n=0,45,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} Product_{k=1..n} G_k(x), where G_n(x) is defined by:
(1) G_n(x) = Series_Reversion( x/(1 + x^n) ),
(2) G_n(x) = x + x*G_n(x)^n,
(3) G_n(x) = Sum_{k>=0} binomial(n*k+1, k) * x^(n*k+1) / (n*k+1).
Showing 1-1 of 1 results.