A206292 Numbers k such that cyclotomic polynomial Phi(k,-m) < Phi(j,-m) for any j > k and m >= 2.
1, 2, 3, 4, 6, 12, 18, 30, 42, 48, 60, 66, 70, 78, 90, 102, 120, 126, 150, 180, 210, 240, 270, 300, 330, 420, 450, 462, 480, 510, 540, 630, 660, 690, 780, 840, 870, 924, 1050, 1092, 1140, 1260, 1320, 1470, 1560, 1680, 1890, 2310, 2730, 2940, 3150, 3570, 3990
Offset: 1
Keywords
Examples
For k such that A000010(k) = 1: Phi(1, -m) = -1 - m, Phi(2, -m) = 1 - m, Phi(1, -m) < Phi(2, -m), so a(1) = 1, a(2) = 2. For k > 2 such that A000010(k) = 2: Phi(3, -m) = 1 - m + m^2, Phi(4, -m) = 1 + m^2, Phi(6, -m) = 1 + m + m^2. When integer m > 1, Phi(3, -m) < Phi(4, -m) < Phi(6, -m), so a(3) = 3, a(4) = 4, and a(5) = 6. For k > 6 such that A000010(k) = 4: Phi(8, -m) = 1 + m^4, Phi(10, -m) = 1 + m + m^2 + m^3 + m^4, Phi(12, -m) = 1 - m^2 + m^4. When integer m > 1, Phi(12, -m) < Phi(8, -m) < Phi(10, -m), so a(6) = 12.
Links
- Wikipedia, Cyclotomic polynomial
Programs
-
Mathematica
t = Select[Range[4000], EulerPhi[#] <= 1000 &]; t = SortBy[t, Cyclotomic[#, -2] &]; DeleteDuplicates[Table[Max[Take[t, n]], {n, 1, Length[t]}]]