A206294 Riordan array (1, x/(1-x)^3).
1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 10, 21, 9, 1, 0, 15, 56, 45, 12, 1, 0, 21, 126, 165, 78, 15, 1, 0, 28, 252, 495, 364, 120, 18, 1, 0, 36, 462, 1287, 1365, 680, 171, 21, 1, 0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
Offset: 0
Examples
Triangle begins: 1 0, 1 0, 3, 1 0, 6, 6, 1 0, 10, 21, 9, 1 0, 15, 56, 45, 12, 1 0, 21, 126, 165, 78, 15, 1 0, 28, 252, 495, 364, 120, 18, 1 0, 36, 462, 1287, 1365, 680, 171, 21, 1 0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1 0, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1 0, 66, 2002, 12870, 31824, 38760, 26324, 10626, 2600, 378, 30, 1
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Maple
# Uses function PMatrix from A357368. PMatrix(10, n -> n * (n + 1) / 2); # Peter Luschny, Oct 07 2022
-
Mathematica
Table[If[n == 0 && k == 0 , 1, Binomial[n - 1 + 2 k, n - k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 25 2017 *)
-
PARI
{T(n,k)=polcoeff(1/(1-x+x*O(x^(n-k)))^(3*k),n-k)}
-
PARI
{T(n,k)=polcoeff(polcoeff((1-x)^3/((1-x)^3-y*x +x*O(x^n)),n,x),k,y)} for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
Formula
Triangle T(n,k), read by rows, given by (0, 3, -1, 2/3, -1/6, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
T(n,0) = 0^n, T(n,k) = C(n-1+2k, n-k) for k > 0.
G.f.: (1-x)^3/((1-x)^3-y*x).
Comments