A206297 Position of n in the canonical bijection from the positive integers to the positive rational numbers.
1, 3, 5, 9, 13, 21, 25, 37, 45, 57, 65, 85, 93, 117, 129, 145, 161, 193, 205, 241, 257, 281, 301, 345, 361, 401, 425, 461, 485, 541, 557, 617, 649, 689, 721, 769, 793, 865, 901, 949, 981, 1061, 1085, 1169, 1209, 1257, 1301, 1393, 1425, 1509, 1549
Offset: 1
Keywords
Examples
The canonical bijection starts with 1/1, 1/2, 2/1, 1/3, 3/1, 2/3, 3/2, 1/4, 4/1, 3/4, 4/3, 1/5, 5/1, so that this sequence starts with 1,3,5,9,13 and A206350 starts with 1,2,4,8,12.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{s = 1, k = 2, j = 1}, While[s <= n, s = s + 2*EulerPhi[k]; k = k + 1]; s = s - 2*EulerPhi[k - 1]; While[s <= n, If[GCD[j, k - 1] = = 1, s = s + 2]; j = j + 1]; If[s > n + 1, j - 1, k - 1]]; t = Table[a[n], {n, 0, 3000}]; (* A038568 *) ReplacePart[1 + Flatten[Position[t, 1]], 1, 1] (* A206297 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A206297(n): if n == 1: return 1 c, j = 1, 2 k1 = (n-1)//j while k1 > 1: j2 = (n-1)//k1 + 1 c += (j2-j)*(A206297(k1+1)-2) j, k1 = j2, (n-1)//j2 return (n-2)*(n-1)-c+j+2 # Chai Wah Wu, Aug 04 2024
Comments