cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206301 G.f. satisfies: A(x) = Sum_{n>=0} x^n * Product_{k=1..n} A(x^k).

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 43, 93, 207, 453, 1003, 2200, 4860, 10681, 23552, 51819, 114186, 251326, 553634, 1218857, 2684461, 5910729, 13016952, 28662693, 63120135, 138991543, 306076520, 673995311, 1484205869, 3268315926, 7197126602, 15848588048, 34899932674
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 19*x^5 + 43*x^6 + 93*x^7 +...
such that, by definition,
A(x) = 1 + x*A(x) + x^2*A(x)*A(x^2) + x^3*A(x)*A(x^2)*A(x^3) + x^4*A(x)*A(x^2)*A(x^3)*A(x^4) + x^5*A(x)*A(x^2)*A(x^3)*A(x^4)*A(x^5) +...
The coefficients in Product_{k=1..n} A(x^k) begin:
n=2: [1, 1, 3, 5, 13, 25, 60, 124, 285, 609, 1369, 2970, 6611, ...];
n=3: [1, 1, 3, 6, 14, 28, 67, 139, 316, 683, 1523, 3317, 7369, ...];
n=4: [1, 1, 3, 6, 15, 29, 70, 145, 332, 713, 1596, 3468, 7717, ...];
n=5: [1, 1, 3, 6, 15, 30, 71, 148, 338, 728, 1627, 3540, 7868, ...];
n=6: [1, 1, 3, 6, 15, 30, 72, 149, 341, 734, 1642, 3570, 7941, ...];
n=7: [1, 1, 3, 6, 15, 30, 72, 150, 342, 737, 1648, 3585, 7971, ...]; ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*prod(k=1, m, subst(A, x, x^k +x*O(x^n))))); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = 1/(1 - x*A(x)/(1+x*A(x) - x*A(x^2)/(1+x*A(x^2) - x*A(x^3)/(1+x*A(x^3) -...)))), a recursive continued fraction.