cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206302 G.f. satisfies: A(x) = Sum_{n>=0} x^n * Product_{d|n} A(x^d)^(n/d).

Original entry on oeis.org

1, 1, 2, 5, 15, 45, 147, 484, 1649, 5698, 20055, 71373, 256998, 933458, 3418160, 12601291, 46739440, 174281272, 652962532, 2456802244, 9279423954, 35170693226, 133726116806, 509926989456, 1949634581725, 7472405641631, 28704432909043, 110496066015970
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 45*x^5 + 147*x^6 +...
such that, by definition,
A(x) = 1 + x*A(x) + x^2*A(x)^2*A(x^2) + x^3*A(x)^3*A(x^3) + x^4*A(x)^4*A(x^2)^2*A(x^4) + x^5*A(x)^5*A(x^5) + x^6*A(x)^6*A(x^2)^3*A(x^3)^2*A(x^6) +...
		

Crossrefs

Cf. A206301.

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*exp(sumdiv(m,d, (m/d)*subst(log(A), x, x^d +x*O(x^n)))))); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))