A206330 Numbers that match polynomials irreducible over the integers.
3, 4, 5, 6, 9, 10, 17, 18, 19, 20, 21, 22, 29, 30, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 69, 70, 73, 74, 77, 78, 81, 82, 83, 84, 87, 88, 97, 98, 101, 102, 105, 106, 109, 110, 113, 114, 117, 118, 119, 120, 123
Offset: 1
Keywords
Examples
In the table under Comments, read "yes" for n=3,4,5,6,9,10.
Programs
-
Mathematica
b[n_] := Table[x^k, {k, 0, n}]; f[n_] := f[n] = FactorInteger[n]; z = 1000; t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]] == Prime[k], f[n][[m, 2]], 0]; u = Table[Apply[Plus, Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1, Length[f[n]]}]], {n, 1, z}]; c[n_] := Module[{s = 1, k = 2, j = 1}, While[s <= n, s = s + 2*EulerPhi[k]; k = k + 1]; s = s - 2*EulerPhi[k - 1]; While[s <= n, If[GCD[j, k - 1] == 1, s = s + 2]; j = j + 1]; If[s > n + 1, j - 1, k - 1]]; d[n_] := Module[{s = 1, k = 2, j = 1}, While[s <= n, s = s + 2*EulerPhi[k]; k = k + 1]; s = s - 2*EulerPhi[k - 1]; While[s <= n, If[GCD[j, k - 1] == 1, s = s + 2]; j = j + 1]; If[s > n + 1, k - 1, j - 1]]; P[n_, x_] := u[[c[n]]].b[-1 + Length[u[[c[n]]]]] - u[[d[n]]].b[-1 + Length[u[[d[n]]]]] TableForm[Table[{n, P[n, x], Factor[P[n, x]]}, {n, 1, z/4}]]; v = {}; Do[n++; If[IrreduciblePolynomialQ[P[n, x]], AppendTo[v, n]], {n, z/2}] v (* A206330 *) Complement[Range[0,200], v] (* A206331 *)
Comments