A206426 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+161)^2 = y^2.
0, 19, 60, 84, 115, 184, 231, 279, 400, 483, 580, 799, 931, 1104, 1495, 1764, 2040, 2739, 3220, 3783, 5056, 5824, 6831, 9108, 10675, 12283, 16356, 19159, 22440, 29859, 34335, 40204, 53475, 62608, 71980, 95719, 112056, 131179, 174420, 200508, 234715, 312064
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1}, {0,19,60,84,115,184,231,279,400,483,580,799,931,1104,1495,1764,2040,2739,3220}, 120]
Formula
G.f.: x^2*(17*x^17 +27*x^16 +12*x^15 +13*x^14 +23*x^13 +13*x^12 +12*x^11 +27*x^10 +17*x^9 -83*x^8 -121*x^7 -48*x^6 -47*x^5 -69*x^4 -31*x^3 -24*x^2 -41*x -19)/((x -1)*(x^18 -6*x^9 +1)). - Colin Barker, Aug 05 2012