A206440 Volume of the last section of the set of partitions of n from the shell model of partitions version "Boxes".
1, 5, 11, 27, 43, 93, 131, 247, 352, 584, 808, 1306, 1735, 2643, 3568, 5160, 6835, 9721, 12672, 17564, 22832, 30818, 39743, 53027, 67594, 88740, 112752, 145944, 183979, 236059, 295370, 375208, 467363, 588007, 728437, 910339, 1121009, 1391083, 1706003, 2103013
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], b(n, i-1)+(p-> p+[0, p[1]*i^2])(b(n-i, min(n-i, i)))) end: a:= n-> (b(n$2)-b(n-1$2))[2]: seq(a(n), n=1..40); # Alois P. Heinz, Feb 23 2022
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, n}, b[n, i-1] + Function[p, p + {0, p[[1]]*i^2}][b[n-i, Min[n-i, i]]]]; a[n_] := (b[n, n] - b[n-1, n-1])[[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 25 2022, after Alois P. Heinz *)
Formula
a(n) ~ sqrt(3) * zeta(3) * exp(Pi*sqrt(2*n/3)) / Pi^2. - Vaclav Kotesovec, Oct 20 2024
Comments