cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A206444 Least n such that L(n)<-1 and L(n)A206284, and a(1)=13.

Original entry on oeis.org

13, 53, 213, 853, 3413, 13653, 54613, 218453, 873813, 3495253
Offset: 1

Views

Author

Clark Kimberling, Feb 07 2012

Keywords

Comments

A206074 gives an ordering {p(n,x)} of the polynomials with coefficients in {0,1}. The least n for which p(n,x) has a root r less than -1 is 13, hence the choice of 13 as the initial term of A206443. (Specifically, p(13,x)=1+x^2+x^3, and r=-1.46557...) The next p(n,x) having a root less than -1 and
The first 10 terms of A206444 are also the 2nd through 11th terms of A072197.

Crossrefs

Programs

  • Mathematica
    highs := {First /@ #, Most[FoldList[Plus, 1, Length /@ #]]} &[Split[Rest[FoldList[Max, -\[Infinity], #]]]] &
    f[polyInX_] := {Min[#], Max[#]} &[
      Map[#[[1]] &, DeleteCases[Map[{#, Head[#]} &, Chop[N[x /. Solve[polyInX == 0, x], 40]]], {_, Complex}]]]
    t = Table[IntegerDigits[n, 2], {n, 1, 100000}];
    b[n_] := Reverse[Array[x^(# - 1) &, {n + 1}]]
    p[n_] := t[[n]].b[-1 + Length[t[[n]]]]
    Table[p[n], {n, 1, 25}]
    fitCriterion = Intersection[Map[#[[1]] &, DeleteCases[
           Table[{n, Boole[IrreduciblePolynomialQ[p[n]]]}, {n, 1, #}], {_, 0}]], Map[#[[1]] &, DeleteCases[
           Table[{n, CountRoots[#, {x, -Infinity, 0}] -
           CountRoots[#, {x, -1, 0}] &[p[n]]}, {n, 1, #}],
               {_, 0}]]] &[Length[t]];
    polyNum = Map[{f[p[#]][[1]], #} &, fitCriterion];
    up = Map[polyNum[[#]] &, highs[Map[#[[1]] &, polyNum]][[2]]]
    down = Map[polyNum[[#]] &, highs[Map[#[[1]] &, -polyNum]][[2]]]
    Table[up[[k, 2]], {k, 1, Length[up]}]      (* A206443 *)
    Table[down[[k, 2]], {k, 1, Length[down]}]  (* A206444 *)
    (* Peter J. C. Moses, Feb 06 2012 *)

Extensions

a(8)-a(10) from Robert G. Wilson v, Feb 11 2012
Showing 1-1 of 1 results.