A206443 Least n such that L(n)<-1 and L(n)>L(n-1), where L(k) means the least root of the polynomial p(k,x) defined at A206284, and a(1)=13.
13, 37, 145, 157, 181, 517, 565, 661, 2101, 2197, 2581, 2773, 8725, 8917, 10357, 10453, 10837, 35029, 35413, 41173, 41557, 43093, 43861
Offset: 1
Programs
-
Mathematica
highs := {First /@ #, Most[FoldList[Plus, 1, Length /@ #]]} &[Split[Rest[FoldList[Max, -\[Infinity], #]]]] & f[polyInX_] := {Min[#], Max[#]} &[ Map[#[[1]] &, DeleteCases[Map[{#, Head[#]} &, Chop[N[x /. Solve[polyInX == 0, x], 40]]], {_, Complex}]]] t = Table[IntegerDigits[n, 2], {n, 1, 100000}]; b[n_] := Reverse[Array[x^(# - 1) &, {n + 1}]] p[n_] := t[[n]].b[-1 + Length[t[[n]]]] Table[p[n], {n, 1, 25}] fitCriterion = Intersection[Map[#[[1]] &, DeleteCases[ Table[{n, Boole[IrreduciblePolynomialQ[p[n]]]}, {n, 1, #}], {_, 0}]], Map[#[[1]] &, DeleteCases[ Table[{n, CountRoots[#, {x, -Infinity, 0}] - CountRoots[#, {x, -1, 0}] &[p[n]]}, {n, 1, #}], {_, 0}]]] &[Length[t]]; polyNum = Map[{f[p[#]][[1]], #} &, fitCriterion]; up = Map[polyNum[[#]] &, highs[Map[#[[1]] &, polyNum]][[2]]] down = Map[polyNum[[#]] &, highs[Map[#[[1]] &, -polyNum]][[2]]] Table[up[[k, 2]], {k, 1, Length[up]}] (* A206443 *) Table[down[[k, 2]], {k, 1, Length[down]}] (* A206444 *) (* Peter J. C. Moses, Feb 06 2012 *)
Comments