A206566 Triangular array: T(i,j) = number of terms common to the binary expansions of i+1 and j, for j=1,2,3,...,i; i=1,2,3,...
0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 3, 1
Offset: 1
Examples
First ten rows: 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 2 1 2 2 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 2 0 1 1 2 1 2 2
Programs
-
Mathematica
d[n_] := IntegerDigits[n, 2]; t[n_] := Reverse[Array[d, 120][[n]]] s[n_] := Position[t[n], 1] t[m_, n_] := Length[Intersection[s[m], s[n]]] TableForm[Table[t[m, n], {m, 1, 14}, {n, 1, 14}]] (* A206479 as a matrix *) Flatten[Table[t[i, n + 1 - i], {n, 1, 14}, {i, 1, n}]] (* A206479 as a sequence *) u = Table[t[n - 1, m], {n, 3, 16}, {m, 1, n - 2}]; TableForm[u] (* A206566 as a triangle *) Flatten[u] (* A206566 as a sequence *) v[n_] := Table[t[k, n + 1], {k, 1, n}] Table[Count[v[n], 0], {n, 1, 100}] (* A115478 *)
Comments