A206483 The matching number of the rooted tree having Matula-Goebel number n.
0, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 3, 1, 2, 2, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 1, 3, 2, 3, 3, 2, 2, 3, 2, 3, 3, 2, 3, 4, 3, 3, 2, 2, 3, 3, 3, 1, 4, 4, 2, 2, 3, 2, 3, 3, 3, 3, 1, 4, 4, 2, 2, 4, 3, 2, 3, 3, 3, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 3, 3, 3, 2, 4, 3, 3, 4, 4, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 2, 2, 4, 3, 4
Offset: 1
Keywords
Examples
a(11)=2 because the rooted tree corresponding to n=11 is a path abcde on 5 vertices. We have matchings with 2 edges (for example, (ab, cd)) but not with 3 edges.
References
- C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.
Links
- É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Cf. A202853.
Programs
-
Maple
with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: M := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [x*M(pi(n))[2], M(pi(n))[1]+M(pi(n))[2]] else [M(r(n))[1]*M(s(n))[2]+M(r(n))[2]*M(s(n))[1], M(r(n))[2]*M(s(n))[2]] end if end proc: m := proc (n) options operator, arrow: sort(expand(M(n)[1]+M(n)[2])) end proc: seq(degree(m(n)), n = 1 .. 110);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; V[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + V[PrimePi[n]], True, V[r[n]] + V[s[n]] - 1]; M[n_] := M[n] = Which[n == 1, {0, 1}, PrimeOmega[n] == 1, {x*M[PrimePi[n]][[2]], M[PrimePi[n]][[1]] + M[PrimePi[n]][[2]]}, True, {M[r[n]][[1]]* M[s[n]][[2]] + M[r[n]][[2]]*M[s[n]][[1]], M[r[n]][[2]]*M[s[n]][[2]]}]; m[n_] := Total[M[n]] // Expand; a[n_] := Exponent[m[n], x]; Table[a[n], {n, 1, 110}] (* Jean-François Alcover, Jun 24 2024, after Maple code *)
Formula
Define b(n) (c(n)) to be the generating polynomials of the matchings of the rooted tree with Matula-Goebel number n that contain (do not contain) the root, with respect to the size of the matching (a k-matching has size k). We have the following recurrence for the pair M(n)=[b(n),c(n)]. M(1)=[0,1]; if n=prime(t), then M(n)=[xc(t),b(t)+c(t)]; if n=r*s (r,s,>=2), then M(n)=[b(r)*c(s)+c(r)*b(s), c(r)*c(s)]. Then m(n)=b(n)+c(n) is the generating polynomial of the matchings of the rooted tree with respect to the size of the matchings (called the matching-generating polynomial). The matching number is the degree of this polynomial.
Comments