A206567 S(m,n) = (number of nonzero terms common to the base 3 expansions of m and n), a symmetric matrix read by antidiagonals.
1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1
Offset: 1
Examples
Northwest corner: 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 2 1 0 1 0 0 1 0 1 2 0 1 1 1 2 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 1 2 1 0 1 0 0 1 0 1 0 0 1 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 2 1 1 2 0 1 0 0 1 0 0 1 1 1 2 1 1 0 0 1 1 1 0 0 0 1 1 1 2 2 1 0 1 2 1 0 1 0 1 2 1 2 3 4 = 3 + 1 and 13 = 3^2 + 3 + 1, so S(13,4)=2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10011 (antidiagonals 1 to 141, flattened)
Programs
-
Maple
S:= proc(m,n) local M,N; M:= convert(m,base,3); N:= convert(n,base,3); convert(zip((s,t) -> `if`(s=t and s <> 0, 1, 0),M,N),`+`); end proc: seq(seq(S(k,n-k+1),k=1..n),n=1..30); # Robert Israel, Mar 19 2018
-
Mathematica
d[n_] := IntegerDigits[n, 3]; t[n_] := Reverse[Array[d, 100][[n]]] s[n_, k_] := Position[t[n], k] t[m_, n_] := Sum[Length[Intersection[s[m, k], s[n, k]]], {k, 1, 2}] TableForm[Table[t[m, n], {m, 1, 24}, {n, 1, 24}]] (* A206567 as a matrix *) Flatten[Table[t[i, n + 1 - i], {n, 1, 24}, {i, 1, n}]] (* A206567 as a sequence *)
-
PARI
d(n) = Vecrev(digits(n, 3)); T(n, k) = {my(dn = d(n), dk = d(k), nb = min(#dn, #dk)); sum(i=1, nb, dn[i] && (dn[i] == dk[i]));} \\ Michel Marcus, Mar 19 2018
Formula
Diagonal entries S(n,n) = A160384(n) since all nonzero digits match. - Robert Israel, Mar 18 2018
Extensions
Edited by Robert Israel, Mar 19 2018
Comments