A206585 The least number s > 1 having exactly n fives in the periodic part of the continued fraction of sqrt(s).
2, 27, 67, 664, 331, 6487, 1237, 6019, 1999, 6331, 3964, 23983, 4204, 22075, 9739, 64639, 10684, 26419, 17971, 80719, 22969, 140971, 28414, 310759, 34189, 290779, 39181, 228691, 46099, 261691, 56884, 416707, 61429, 136579, 76651, 535375, 75916, 296839, 87151
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nn = 50; zeros = nn; t = Table[0, {nn}]; k = 2; While[zeros > 0, If[! IntegerQ[Sqrt[k]], cnt = Count[ContinuedFraction[Sqrt[k]][[2]], 5]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = k; zeros--]]; k++]; Join[{2}, t]
-
Python
from sympy import continued_fraction_periodic def A206585(n): i = 2 while True: s = continued_fraction_periodic(0,1,i)[-1] if isinstance(s, list) and s.count(5) == n: return i i += 1 # Chai Wah Wu, Jun 10 2017
Extensions
Definition clarified by Chai Wah Wu, Jun 10 2017