A206602 a(n) is the number of white and black stones lying in a circle; starting with place 1, the first a(n) steps of length 5 give the places of white stones. Beginning with last place, the next a(n) steps give the places of black stones.
2, 5, 11, 14, 36, 57, 141, 221, 346, 677, 4042, 9870, 114916, 179557, 1070250, 2612917, 9967491, 12459364, 19467757, 30418371, 38022964, 59410882, 116036880, 283293166, 553306966, 864542135, 1080677669, 3297966522, 8051676081, 15725929847, 19657412309, 47991729272
Offset: 1
Keywords
Examples
The solution for a(3) = 11: (WBWBWBWBWWBBBWWWBBBWBW); White stones: (5, 10, 15, 20, 3, 9, 16, 22, 7, 14, 1); Black stones: (8, 18, 4, 17, 6, 21, 13, 12, 20, 2, 11).
Links
- R. Baumann, Computer Knobelei, LOG IN, Heft Nr. 165, pp. 68-71, 2010 (in German).
- SaburĂ´ Uchiyama, On the generalized Josephus problem, Tsukuba J. Math. 27(2) (2003), 319-339; see p. 337. [Has about 50 sequences related to Seki Takakazu's "limitative numbers"]
- SaburĂ´ Uchiyama, On the generalized Josephus problem, Tsukuba J. Math. 27(2) (2003), 319-339 [jstor stable version]; see p. 337.
- Wikipedia, Seki Takakazu.
- Index entries for sequences related to the Josephus Problem
Programs
-
Maple
s:=5: s1:=s-1: a:=1: for p from 2 to 100000 by 2 do b:=(a+s1) mod p +1: if (b=1) then printf("%9d",p-1): end if: a:=(b+s1) mod (p+1) +1: if (a=1) then printf("%9d",p): end if: end do:
Comments