cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206689 Number of nX5 0..3 arrays with no element equal to another within two positions in the same row or column, and new values 0..3 introduced in row major order.

Original entry on oeis.org

4, 116, 704, 4704, 31504, 213788, 1454810, 9933294, 67923354, 464901756, 3183631874, 21807955698, 149409637478, 1023727198288, 7014765000890, 48067928493696, 329386094806172, 2257144779520590, 15467353757059122
Offset: 1

Views

Author

R. H. Hardin Feb 11 2012

Keywords

Comments

Column 5 of A206692

Examples

			Some solutions for n=4
..0..1..2..0..3....0..1..2..0..1....0..1..2..3..1....0..1..2..0..3
..2..3..1..2..0....1..3..0..1..3....1..3..0..1..2....1..3..0..1..2
..1..2..3..1..2....2..0..3..2..0....3..2..1..0..3....2..0..1..2..0
..0..1..2..0..1....3..1..2..3..1....2..1..3..2..0....3..1..2..0..1
		

Formula

Empirical: a(n) = 15*a(n-1) -51*a(n-2) -193*a(n-3) +1051*a(n-4) +2372*a(n-5) -12985*a(n-6) -28529*a(n-7) +129318*a(n-8) +212356*a(n-9) -839013*a(n-10) -1225696*a(n-11) +3710749*a(n-12) +5631517*a(n-13) -12635093*a(n-14) -10482155*a(n-15) +20618112*a(n-16) -52448859*a(n-17) +89397201*a(n-18) +475219332*a(n-19) -737964757*a(n-20) -2124354526*a(n-21) +2768115261*a(n-22) +6892655423*a(n-23) -7216788413*a(n-24) -17073837012*a(n-25) +13711465539*a(n-26) +33849631222*a(n-27) -19860441490*a(n-28) -54273123627*a(n-29) +22693872893*a(n-30) +69529238877*a(n-31) -18479245923*a(n-32) -75447262323*a(n-33) +12929746123*a(n-34) +69053543781*a(n-35) -12580606120*a(n-36) -47563475725*a(n-37) +7500075785*a(n-38) +28981491455*a(n-39) -2451216650*a(n-40) -19568112616*a(n-41) +4647832637*a(n-42) +9173909442*a(n-43) -4357897047*a(n-44) -1874621589*a(n-45) +1362472381*a(n-46) +274611989*a(n-47) -277377765*a(n-48) -85579555*a(n-49) +103689018*a(n-50) -6885628*a(n-51) -13682116*a(n-52) +1459344*a(n-53) +585424*a(n-54) +164352*a(n-55) for n>57