cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A206687 Number of n X 2 0..3 arrays with no element equal to another within two positions in the same row or column, and new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 4, 11, 36, 116, 376, 1216, 3936, 12736, 41216, 133376, 431616, 1396736, 4519936, 14626816, 47333376, 153174016, 495681536, 1604059136, 5190844416, 16797925376, 54359228416, 175910158336, 569257230336, 1842155094016, 5961339109376
Offset: 1

Views

Author

R. H. Hardin, Feb 11 2012

Keywords

Comments

Column 2 of A206692.

Examples

			All solutions for n=4:
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..2..3....1..0....2..3....1..0....2..3....1..2....1..2....1..2....1..0
..1..2....2..3....1..0....2..3....3..2....2..0....3..0....2..3....2..3
..0..1....3..2....3..1....3..1....1..0....3..1....0..1....0..1....0..1
		

Crossrefs

Cf. A206692.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) for n>4.
Conjectures from Colin Barker, Feb 23 2018: (Start)
G.f.: x*(1 - x)*(1 + x)*(1 + 2*x) / (1 - 2*x - 4*x^2).
a(n) = ((1-sqrt(5))^n*(-5+3*sqrt(5)) + (1+sqrt(5))^n*(5+3*sqrt(5))) / (16*sqrt(5)) for n>2.
(End)

A206688 Number of nX4 0..3 arrays with no element equal to another within two positions in the same row or column, and new values 0..3 introduced in row major order.

Original entry on oeis.org

2, 36, 176, 916, 4704, 24492, 127008, 660888, 3436488, 17884080, 93059016, 484334480, 2520695968, 13119605656, 68284077520, 355405952496, 1849822022856, 9628019156288, 50112266984832, 260826450827576, 1357560738338768
Offset: 1

Views

Author

R. H. Hardin Feb 11 2012

Keywords

Comments

Column 4 of A206692

Examples

			Some solutions for n=4
..0..1..2..3....0..1..2..3....0..1..2..3....0..1..2..3....0..1..2..3
..2..3..0..2....3..0..1..2....1..0..3..1....2..3..1..0....2..3..0..1
..3..2..1..0....1..2..3..1....2..3..1..0....3..2..0..1....1..0..3..2
..0..1..2..3....0..1..2..0....3..1..0..2....0..1..2..3....0..1..2..3
		

Formula

Empirical: a(n) = 8*a(n-1) -8*a(n-2) -48*a(n-3) +48*a(n-4) +140*a(n-5) +67*a(n-6) -968*a(n-7) +1564*a(n-8) -586*a(n-9) -1008*a(n-10) -32*a(n-11) +1304*a(n-12) +80*a(n-13) -512*a(n-14) for n>15

A206689 Number of nX5 0..3 arrays with no element equal to another within two positions in the same row or column, and new values 0..3 introduced in row major order.

Original entry on oeis.org

4, 116, 704, 4704, 31504, 213788, 1454810, 9933294, 67923354, 464901756, 3183631874, 21807955698, 149409637478, 1023727198288, 7014765000890, 48067928493696, 329386094806172, 2257144779520590, 15467353757059122
Offset: 1

Views

Author

R. H. Hardin Feb 11 2012

Keywords

Comments

Column 5 of A206692

Examples

			Some solutions for n=4
..0..1..2..0..3....0..1..2..0..1....0..1..2..3..1....0..1..2..0..3
..2..3..1..2..0....1..3..0..1..3....1..3..0..1..2....1..3..0..1..2
..1..2..3..1..2....2..0..3..2..0....3..2..1..0..3....2..0..1..2..0
..0..1..2..0..1....3..1..2..3..1....2..1..3..2..0....3..1..2..0..1
		

Formula

Empirical: a(n) = 15*a(n-1) -51*a(n-2) -193*a(n-3) +1051*a(n-4) +2372*a(n-5) -12985*a(n-6) -28529*a(n-7) +129318*a(n-8) +212356*a(n-9) -839013*a(n-10) -1225696*a(n-11) +3710749*a(n-12) +5631517*a(n-13) -12635093*a(n-14) -10482155*a(n-15) +20618112*a(n-16) -52448859*a(n-17) +89397201*a(n-18) +475219332*a(n-19) -737964757*a(n-20) -2124354526*a(n-21) +2768115261*a(n-22) +6892655423*a(n-23) -7216788413*a(n-24) -17073837012*a(n-25) +13711465539*a(n-26) +33849631222*a(n-27) -19860441490*a(n-28) -54273123627*a(n-29) +22693872893*a(n-30) +69529238877*a(n-31) -18479245923*a(n-32) -75447262323*a(n-33) +12929746123*a(n-34) +69053543781*a(n-35) -12580606120*a(n-36) -47563475725*a(n-37) +7500075785*a(n-38) +28981491455*a(n-39) -2451216650*a(n-40) -19568112616*a(n-41) +4647832637*a(n-42) +9173909442*a(n-43) -4357897047*a(n-44) -1874621589*a(n-45) +1362472381*a(n-46) +274611989*a(n-47) -277377765*a(n-48) -85579555*a(n-49) +103689018*a(n-50) -6885628*a(n-51) -13682116*a(n-52) +1459344*a(n-53) +585424*a(n-54) +164352*a(n-55) for n>57

A206690 Number of nX6 0..3 arrays with no element equal to another within two positions in the same row or column, and new values 0..3 introduced in row major order.

Original entry on oeis.org

8, 376, 2816, 24492, 213788, 1915580, 17277556, 156946368, 1429962032, 13057140562, 119353104128, 1091748256156, 9990044761998, 91434371494388, 836958605238016, 7661779056726008, 70141114109343664, 642134221496445414
Offset: 1

Views

Author

R. H. Hardin Feb 11 2012

Keywords

Comments

Column 6 of A206692

Examples

			Some solutions for n=4
..0..1..2..3..1..0....0..1..2..3..1..2....0..1..2..0..1..3....0..1..2..3..1..0
..2..3..1..0..2..1....1..0..3..1..0..3....1..0..3..1..2..0....2..3..1..2..3..1
..1..2..3..1..0..3....2..3..0..2..3..1....3..2..1..3..0..1....1..2..0..1..2..3
..0..1..2..3..1..0....3..1..2..3..1..2....0..1..2..0..1..2....3..0..2..3..1..2
		

A206691 Number of nX7 0..3 arrays with no element equal to another within two positions in the same row or column, and new values 0..3 introduced in row major order.

Original entry on oeis.org

16, 1216, 11264, 127008, 1454810, 17277556, 208563912, 2543024548, 31198656992, 384076975680, 4737250216482, 58497114248288, 722787914355820, 8933909144447138, 110448738176212632, 1365616810440861728
Offset: 1

Views

Author

R. H. Hardin Feb 11 2012

Keywords

Comments

Column 7 of A206692

Examples

			Some solutions for n=4
..0..1..2..3..0..1..2....0..1..2..3..1..0..2....0..1..2..3..0..2..3
..1..3..0..1..2..3..0....1..3..0..1..2..3..0....1..2..3..0..1..3..0
..2..0..1..2..3..0..1....2..0..3..2..0..1..3....2..3..1..2..3..0..1
..0..2..3..0..1..2..3....3..2..1..0..3..2..1....3..1..0..3..2..1..3
		

A206686 Number of n X n 0..3 arrays with no element equal to another within two positions in the same row or column, and new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 4, 44, 916, 31504, 1915580, 208563912, 41832855136, 15644344542416, 10971573350181154
Offset: 1

Views

Author

R. H. Hardin Feb 11 2012

Keywords

Comments

Diagonal of A206692

Examples

			Some solutions for n=4
..0..1..2..0....0..1..2..3....0..1..2..3....0..1..2..3....0..1..2..3
..2..0..1..2....1..0..3..1....3..2..0..1....1..2..0..1....1..3..0..1
..1..3..0..1....2..3..1..0....1..0..3..2....2..3..1..0....3..0..1..2
..3..1..2..3....0..1..2..3....2..3..1..0....0..1..2..3....2..1..3..0
		
Showing 1-6 of 6 results.